Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кузбасский государственный технический университет имени Т. Ф. Горбачева»

О. Н. Дегтярева М. В. Купченко О. А. Останин

МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ:

Учебное пособие к курсовой работе

Рецензенты:

Кафедра технологии металлов и ремонта машин Кемеровского государственного сельскохозяйственного института

Начальник отдела систем менеджмента качества ФГБОУ ВПО «Кемеровский технологический институт пищевой промышленности», профессор, доктор технических наук Л. М. Захарова

Дегтярева, О. Н. Метрология, сертификация, стандартизация: Учебное пособие к курсовой работе. — 2-е изд., перераб. и доп. / О. Н. Дегтярева, М. В. Купченко, О. А. Останин ; Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева. — Кемерово, 2013. — 118 с. ISBN 978-5-89070-939-4

Рассмотрены примеры решения задач курсовой работы по дисциплине «Метрология, стандартизация и сертификация», предназначенных для закрепления теоретических знаний студентов, приобретения навыков в работе с нормативно-техническими документами, проведения расчетов и выбора посадок типовых соединений.

Подготовлено для направления 150700.62 «Машиностроение» профиля «Оборудование и технология сварочного производства» и направления 151900.62 «Конструкторско-технологическое обеспечение машиностроительных производств» профилей «Технология машиностроения», «Металлообрабатывающие станки и комплексы», «Инструментальные системы машиностроительного производства».

Печатается по решению редакционно-издательского совета Кузбасского государственного технического университета имени Т. Ф. Горбачева.

УДК 621.753

- © Кузбасский государственный технический университет имени Т. Ф. Горбачева, 2013
- © Дегтярева О. Н., Купченко М. В., Останин О. А., 2013

Оглавление

Предисловие	5
Содержание курсовой работы	6
Оформление курсовой работы	6
Задание № 1	
Нормирование элементов деталей гладкого цилиндрического	
сопряжения	8
Задание № 2	
Нормирование точности калибров	14
Задание № 3	
Нормирование элементов деталей сопряжений с	
подшипниками качения	19
Задание № 4	
Нормирование элементов резьбового сопряжения	29
Задание № 5	
Расчет и выбор посадки с зазором	35
Задание № 6	
Решение размерных цепей	49
Задание № 7	
Нормирование элементов шлицевого сопряжения	60
Задание № 8	
Нормирование элементов шпоночного сопряжения	66
Приложение 1	
Замена посадок по системе ОСТ ближайшими посадками по	
ЕСДП при размерах от 1 до 500 мм	72
Приложение 2	
Выписка из ГОСТ 25347-82	75
Приложение 3	
Допуски и отклонения полей допусков калибров	
(по ГОСТ 24853–81)	91
Приложение 4	
Зависимость квалитетов сопрягаемых с подшипником	
деталей от класса точности подшипников	93
Приложение 5	
Шероховатость по параметру <i>Ra</i> для посадочных мест и	
опорных торцевых поверхностей (ГОСТ 3325-85)	93

Приложение	e 6			
Допуски	формы	посадочных	поверхностей	
(ΓΟCT 3325-	–85)			94
Приложение	2 7			
Допуски	торцевого	биения зап.	печиков валов	
(ΓΟCT 3325-	–85)			95
Приложение	28			
Допуски тор	оцевого биени	я заплечиков от	верстий корпусов	
(ΓΟCT 3325-	–85)			95
Приложение	9			
Варианты п	осадок при ц	иркуляционном	виде нагружения	
колец подши	ипника			96
Приложение	e 10			
Варианты п	осадок при м	иестном виде н	агружения колец	
подшипника	1			97
Приложение	e 11			
	-	-	вые радиальные	
и шариковы	е радиально-уг	порные (по ГОС	Т 520–2002)	98
Приложение	2 12			
Диаметр рез	ьбы (по ГОСТ	24705–81)		106
Приложение	2 13			
Значения еді	иниц допуска ,	для размеров до	500 мм	106
Приложение				
Допуски для	гразмеров до 5	500 мм (по ГОСТ	Г 25346–89)	107
Приложение	2 15			
Выписка из	ГОСТ 1139–80)		109
Приложение				
Параметры і	шпоночного со	оединения (по ГО	OCT 23360–78)	112
Приложение	2 17			
_			$- t_1$), $(d + t_2)$	
(по ГОСТ 23	3360–78)			113
Приложение	2 18			
Рекомендуем	мые значения	микронеровнос	стей поверхности	
деталей				114
Приложение	2 19			
Пример офо	рмления титул	ьного листа		116
Список реко	мендуемой ли	тературы		117

Предисловие

учебное пособие разработано Данное кафедре на "Технология машиностроения" ведущими преподавателями с нормативно-технических современных требований учетом области метрологии, документов В стандартизации И взаимозаменяемости.

Курсовая работа является заключительной частью курса «Метрология, стандартизация и сертификация».

Цель курсовой работы состоит в закреплении полученных теоретических знаний, приобретении практических навыков работы с нормативной документацией, технической литературой, чертежами, проведение расчетов и выборе посадок типовых соединений.

В пособии представлены типовые задачи, решаемые инженерами в условиях производства. Для каждой задачи приведены методические указания по ее решению и рассмотрен подробный пример решения.

В результате выполнения курсовой работы студент овладевает профессиональными компетенциями ПК-15, ПК-24, ПК-35, ПК-52.

Содержание курсовой работы

Индивидуальные задания выбираются из таблиц исходных данных согласно номеру варианта. Номер варианта выдается преподавателем.

По каждой теме даны методические материалы и рассмотрен пример решения типового задания.

В курсовой работе студент должен:

- 1. Пронормировать элементы деталей гладкого цилиндрического сопряжения. Определить величины характеристик сопряжения.
- 2. Рассчитать размеры гладких калибров для контроля двух заданных деталей. Выбрать конструкцию калибров. Выполнить рабочие и сборочные чертежи гладких калибров.
 - 3. Назначить посадки для подшипникового сопряжения.
- 4. Рассчитать размеры и допуски деталей резьбового сопряжения, калибры для их контроля.
- 5. Рассчитать и выбрать посадку с зазором или натягом (зависит от номера варианта).
 - 6. Составить и решить размерную цепь.
- 7. Назначить посадки и рассчитать размеры шпоночного сопряжения.
- 8. Назначить посадки и рассчитать размеры шлицевого сопряжения.

Объем курсовой работы: расчетно-пояснительная записка – 30–35 листов, графическая часть – 5–6 листов формата A4.

Оформление курсовой работы

Расчетно-пояснительная записка оформляется на листах формата $A4 (210 \times 297 \text{ мм})$.

Основные надписи и рамки на листах пояснительной записки выполняются в соответствии с ГОСТ 2.104–68. Образец титульного листа приведен в прил. 19.

Расчетно-пояснительная записка должна быть оформлена в соответствии с ГОСТ 2.105-95. В конце работы приводится

перечень используемой литературы с указанием автора книги, издательства, года издания, количества страниц. В тексте работы в местах ссылки на тот или иной источник ставится его порядковый номер в списке использованной литературы и номер страницы и, если необходимо, таблицы.

Все данные, которыми пользуется студент, должны быть взяты из действующих стандартов.

Графическая часть работы выполняется на листах ватмана формата A4 (210×297 мм) карандашом или на компьютере. Оформление чертежей ведется в соответствии с требованиями ЕСКД.

ЗАДАНИЕ № 1 НОРМИРОВАНИЕ ЭЛЕМЕНТОВ ДЕТАЛЕЙ ГЛАДКОГО ЦИЛИНДРИЧЕСКОГО СОПРЯЖЕНИЯ

Заданную в системе ОСТ посадку перевести в систему ЕСДП.

По данному номинальному диаметру и переведенной в ЕСДП посадке:

- изобразить схемы расположения полей допусков; на схемах указать предельные отклонения, номинальные диаметры;
 - определить предельные диаметры отверстия и вала;
- определить предельные и средние зазоры и натяги и указать их на схеме расположения полей допусков;
- определить допуск посадки (допуск зазора, допуск натяга или допуск переходной посадки);
- изобразить в сборе и отдельно детали сопряжения и обозначить на них размеры с условными обозначениями посадок и предельных отклонений.

Исходные данные:

По последней цифре номера варианта

№	0	1	2	3	4	5	6	7	8	9
Диаметр D ,	25	16	300	6	40	100	10	160	250	60
MM	23	10	300		70	100	10	100	250	

По предпоследней цифре номера варианта

Nº	0	1	2	3	4	5	6	7	8	9
Посадка	<u>Д</u> Н	<u>Ш</u> П	$\frac{\mathcal{I}_1}{X}$	$\frac{T_{2a}}{\Pi p}$	$\frac{X}{X}$	<u>Γp</u> X	<u>C</u> H	$egin{array}{c} \underline{JI} \\ H_{2a} \end{array}$	<u>Г</u> Ш	$\frac{X}{\Pi}$

Методические указания к заданию № 1

Перевод посадки из системы ОСТ в ЕСДП.

Записать, согласно правилу образования комбинированных посадок, отверстие — в системе вала, вал — в системе отверстия. Последовательно перевести каждую из посадок в систему ЕСДП (прил. 1). Сформировать комбинированную посадку.

По заданному номинальному диаметру и переведенной в ЕСДП посадке выписать по ГОСТ 25347–82 предельные отклонения размеров сопрягаемых деталей – отверстий (прил. 2, табл. 2.2) и валов (прил. 2, табл. 2.1).

Построить схему расположения полей допусков, указать номинальные размеры и предельные отклонения.

Расчет характеристик посадок производить по следующим формулам:

- посадок с зазором

$$S_{\text{max}} = D_{\text{max}} - d_{\text{min}} = ES - ei; \tag{1}$$

$$S_{\min} = D_{\min} - d_{\max} = EI - es; \tag{2}$$

$$S_m = \frac{S_{\text{max}} + S_{\text{min}}}{2} \tag{3}$$

– посадок с натягом

$$N_{\max} = d_{\max} - D_{\min} = es - EI; \tag{4}$$

$$N_{\min} = d_{\min} - D_{\max} = ei - ES; \tag{5}$$

$$N_m = \frac{N_{\text{max}} + N_{\text{min}}}{2} \tag{6}$$

– переходных посадок S_{max} и N_{max} по формулам (1) и (4).

Для переходных посадок, у которых $|S_{\max}| > |N_{\max}|$, определить средний зазор:

$$S_m = \frac{S_{\text{max}} - N_{\text{max}}}{2},\tag{7}$$

а для переходных посадок, у которых $|N_{\rm max}| > |S_{\rm max}|$, определить средний натяг:

$$N_m = \frac{N_{\text{max}} - S_{\text{max}}}{2} \tag{8}$$

Указание предельных и средних зазоров и натягов на схеме расположения полей допусков производить согласно примерам, приведенным далее.

Допуск посадки TS и TN определяется по следующим формулам:

посадок с зазором

$$TS = S_{\text{max}} - S_{\text{min}}, \qquad (9)$$

– посадок с натягом

$$TN = N_{\text{max}} - N_{\text{min}}, \tag{10}$$

переходных посадок

$$TS(TN) = S_{\text{max}} + N_{\text{min}}. \tag{11}$$

Для всех типов посадок, независимо от характера соединения, допуск посадки может быть также определен как сумма допусков отверстия и вала:

$$T_{\Pi OC} = TD + Td. \tag{12}$$

Изобразить отдельно эскизы вала, отверстия и соединения в сборе. На каждом эскизе проставить размеры тремя возможными способами: буквенным (с указанием номинального размера и буквенным обозначением поля допуска); числовым (с указанием номинального размера и предельных отклонений); комбинированным (с указанием номинального размера, буквенного обозначения поля допуска и предельных отклонений).

Пример:

Для посадки $Ø65\frac{H7}{k6}$ выполнить действия, предусмотренные условием задания № 1.

1. Перевести посадку из системы ОСТ в систему ЕСДП.

$$\varnothing 65 \frac{C}{H} = \left(\frac{C}{B} + \frac{A}{H}\right) = \left(\frac{H7}{h6} + \frac{H6}{k6}\right) = \varnothing 65 \frac{H7}{k6}.$$
 [3, c. 255]

2. Построить схему расположения полей допусков сопрягаемых деталей для посадки $\emptyset 65 \frac{H7}{k6}$ (рис. 1).

Определить значения предельных отклонений по ГОСТ 25347—82:

для отверстия \emptyset 65*H7*: ES = +30 мкм, EI = 0;

для вала $\emptyset 65k6$: es = +21 мкм, ei = +2 мкм.

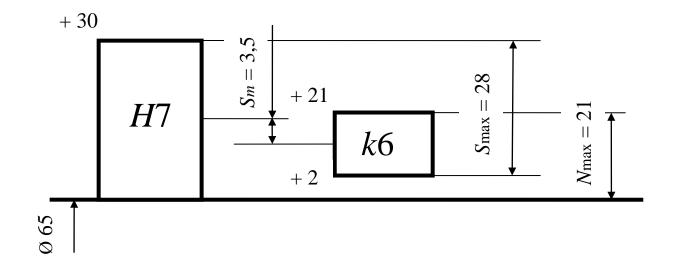


Рис. 1. Схема расположения полей допусков сопряжения \emptyset 65 $\frac{H7}{k6}$

3. Определить предельные значения отверстия и вала.

$$D_{\rm max} = D + ES = 65 + 0,030 = 65,030$$
 mm; $D_{\rm min} = D + EI = 65 + 0 = 65$ mm; $d_{\rm max} = d + es = 65 + 0,021 = 65,021$ mm; $d_{\rm min} = d + ei = 65 + 0,002 = 65,002$ mm;

4. Определить максимальный зазор и натяг, средний зазор.

$$S_{\max} = D_{\max} + d_{\min} = 65,030 - 65,002 = 0,028 \text{ mm};$$
 $S_{\max} = ES - ei = 30 - 2 = 28 \text{ mkm};$
 $N_{\max} = d_{\max} - D_{\min} = 65,021 - 65 = 0,021 \text{ mm};$
 $N_{\max} = es - EI = 21 - 0 = 21 \text{ mkm};$
 $S_m = \frac{S_{\max} - N_{\max}}{2} = \frac{28 - 21}{2} = 3,5 \text{ mkm}.$

5. Определить допуск отверстия и допуск вала.

$$TD = D_{\max} - D_{\min} = 65,030 - 65,0 = 0,03$$
 мм; $TD = ES - EI = 30 - 0 = 30$ мкм; $Td = d_{\max} - d_{\min} = 65,021 - 65,002 = 0,019$ мм; $Td = es - ei = 21 - 2 = 19$ мкм.

6. Определить допуск посадки, допуск переходной посадки.

$$T_{\text{пос}} = TD + Td = 30 + 19 = 49$$

 $TS(TN) = S_{\text{max}} + N_{\text{max}} = 28 + 21 = 49$ мкм.

7. Нанести на эскизы варианты обозначения размеров.

Варианты обозначения размеров на чертежах представлены на рис. 2.

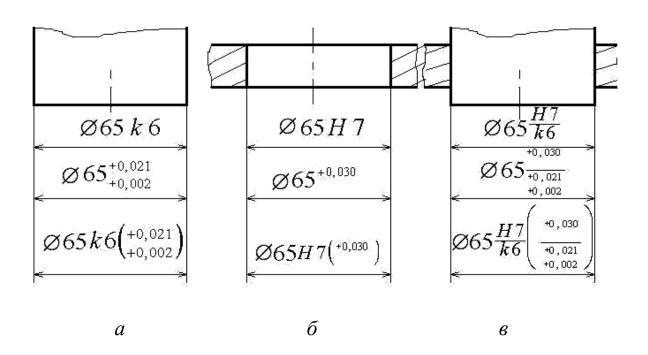


Рис. 2. Варианты обозначения на чертеже для посадки \emptyset 65 $\frac{H7}{k6}$ a – вал; δ – отверстие; ϵ – соединение в сборе

ЗАДАНИЕ № 2 НОРМИРОВАНИЕ ТОЧНОСТИ КАЛИБРОВ

Для рассчитанной в задание № 1 посадки и заданного номинального диаметра в системе ЕСДП:

- найти по ГОСТам отклонения на рабочие и контрольные калибры, построить схему расположения полей допусков калибров относительно полей допусков деталей, проверяемых калибрами. Указать на схеме условные обозначения калибров, допуски и предельные отклонения полей допусков калибров;
 - рассчитать исполнительные размеры рабочих калибров;
- рассчитать исполнительные размеры контрольных калибров;
- выполнить деталировочные и сборочные чертежи рабочих калибров-пробок и калибров-скоб (количество чертежей зависит от диаметра и конструкции калибров). К сборочным чертежам приложить спецификацию.

Методические указания к заданию № 2

Построить схему расположения полей допусков контролируемых деталей. По ГОСТ 24853–81 построить схему расположения полей допусков калибров для контроля отверстия и вала; выписать значения параметров, характеризующих величины допусков и координирующие их положение относительно предельных размеров контролируемых деталей (вала и отверстия); указать эти величины на схеме расположения полей допусков. По ГОСТ 24851–81 указать обозначение полей допусков калибров.

При расчете исполнительных размеров калибров руководствоваться следующими правилами:

- исполнительным размером калибра-пробки является наибольший предельный размер калибра с отрицательным отклонением, равным допуску на изготовление;
- исполнительным размером калибра-скобы является наименьший предельный размер калибра с положительным отклонением, равным допуску на изготовление.

Согласно заданному диаметру, выбрать стандартную

конструкцию калибров:

для калибров-пробок ГОСТ 14807 — 14827—69. Калибрыпробки гладкие диаметром от 1 до 360 мм. Конструкция и размеры;

для калибров-скоб ГОСТ 18355 — 18357—73. Калибры-скобы для длин свыше 10 до 500 мм. Конструкция и размеры. ГОСТ 18358 — 18369—73. Калибры-скобы для диаметров от 1 до 360 мм. Конструкция и размеры.

Выполнить чертежи рабочих проходных и непроходных калибров. Для односторонних однопредельных калибров-пробок выполнить три чертежа (один сборочный и два деталировочных). Для двусторонних двупредельных калибров-пробок выполнить четыре чертежа (два сборочных и два деталировочных).

Для калибра-скобы, в зависимости от конструкции, выполнить один (деталировочный) или два чертежа (деталировочный и сборочный).

Каждый чертеж выполняется на отдельном листе формата А4. К сборочным чертежам прилагается спецификация.

На чертежах указать соответствующие технические требования. Технические требования для калибров выбрать по ГОСТ 2015–84.

Пример:

Для посадки $\emptyset 65 \frac{H7}{k6}$ выполнить действия, предусмотренные условием задания № 2.

1. Построить схему расположения полей допусков калибров для контроля отверстия (рис. 3).

По ГОСТ 24853–81 (прил. 3) определить параметры, характеризующие величину допусков и расположение полей допусков калибров относительно предельных размеров отверстия:

$$z = 4$$
 мкм, $y = 3$ мкм, $H = 5$ мкм.

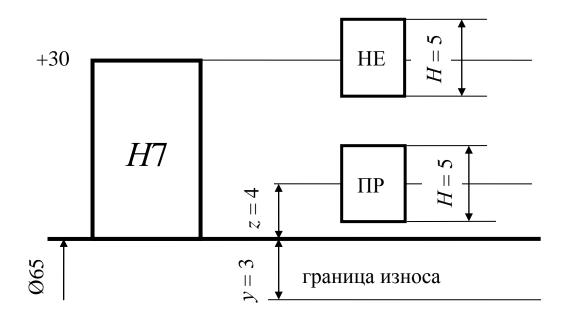


Рис. 3. Схема расположения полей допусков калибров для контроля отверстия $\emptyset 65H7$

2. Рассчитать исполнительные размеры рабочих калибровпробок.

$$\Pi P_{\text{исп}} = (D_{\text{min}} + z + \frac{H}{2})_{-H} = (65 + 0,004 + \frac{0,005}{2})_{-0,005} =$$

$$= 65,0065_{-0,005} \text{ MM}.$$

$$HE_{\text{исп}} = (D_{\text{max}} + \frac{H}{2})_{-H} = (65,030 + \frac{0,005}{2})_{-0,005} =$$

$$= 65,0325_{-0,005} \text{ MM}.$$

$$\Pi P_{\text{изн}} = D_{\text{max}} - y = 65 - 0,003 = 64,997 \text{ MM}.$$

3. Построить схему расположения полей допусков калибров для контроля вала (рис. 4).

По ГОСТ 24853–81 (прил. 3) определить параметры, характеризующие величину допусков и расположение полей допусков калибров относительно предельных размеров вала:

 $z_1 = 4$ мкм, $y_1 = 3$ мкм, $H_1 = 5$ мкм, $H_p = 2$ мкм.

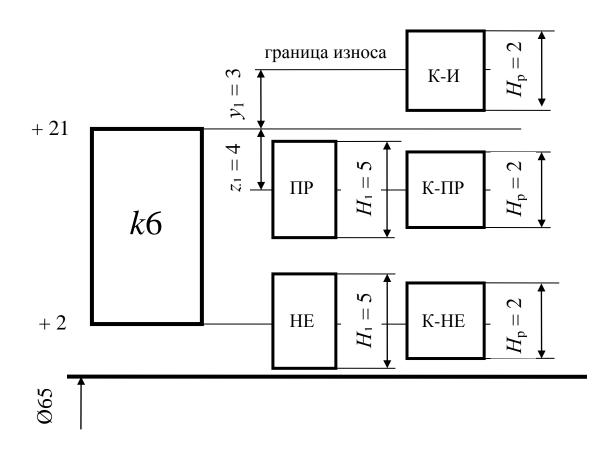


Рис. 4. Схема расположения полей допусков калибров для контроля вала $\emptyset 65k6$

4. Рассчитать исполнительные размеры рабочих калибровскоб.

$$\begin{split} \Pi \mathrm{P}_{\text{исп}} &= (d_{\text{max}} - z_1 + \frac{H_1}{2})^{+H}{}_1 = (65,021 - 0,004 - \frac{0,005}{2})^{+0,005} = \\ &= 65,0145^{+0,005} \text{ MM}. \\ \mathrm{HE}_{\text{исп}} &= (d_{\text{min}} + \frac{H_1}{2})^{+H}{}_1 = (65,002 + \frac{0,005}{2})^{+0,005} = \\ &= 64,999 \; 5^{+0,005} \; \mathrm{MM}. \\ \mathrm{\Pi P}_{\text{изн}} &= d_{\text{max}} + y_1 = 65,021 + 0,003 = 65,024 \; \mathrm{MM}. \end{split}$$

5. Рассчитать исполнительные размеры контрольных калибров-пробок для контроля рабочих калибров-скоб.

$$\begin{array}{l} {\rm K-}\Pi{\rm P}_{\rm исп} \ = \ (d_{\rm max} \ - \ z_1 \ + \ \frac{H_p}{2})_{\rm -Hp} \ = \ (65,021 \ - \ 0,004 \ + \\ \\ + \ \frac{0,002}{2})_{\rm -0,002} = 65,0145_{\rm -0,002} \ {\rm MM}. \\ {\rm K-HE}_{\rm исп} \ = \ (d_{\rm min} \ + \ \frac{H_p}{2})_{\rm -Hp} \ = \ (65,002 \ + \ \frac{0,002}{2})_{\rm -0,002} \ = \\ \\ = 65,003_{\rm -0,002} \ {\rm MM}. \\ {\rm K-}\Pi{\rm P}_{\rm изh} \ = \ (d_{\rm max} \ + \ y_1 \ + \ \frac{H_p}{2})_{\rm -Hp} \ = \ (65,021 \ + \ 0,003 \ + \\ \\ + \ \frac{0,002}{2})_{\rm -0,002} \ = 65,025_{\rm -0,002} \ {\rm MM}. \end{array}$$

6. Выполнить деталировочные и сборочные чертежи рабочих калибров.

ЗАДАНИЕ № 3 НОРМИРОВАНИЕ ЭЛЕМЕНТОВ СОПРЯЖЕНИЙ С ПОДШИПНИКАМИ КАЧЕНИЯ

Для подшипника качения по заданным номерам подшипника, классу точности, величине и характеристике нагрузки, условиям эксплуатации подшипника:

- определить характер нагружения наружного и внутреннего колец подшипника (изобразить кинематическую схему нагружения колец подшипника);
- выбрать посадку для внутреннего и наружного колец подшипника;
- построить схемы расположения полей допусков сопряжения внутреннего кольца (d) с валом и наружного кольца (D) с корпусом (на схеме указать предельные отклонения, предельные зазоры и (или) натяги);
- рассчитать величину предельных зазоров и (или) натягов для сопряжения по аналогичной посадке для гладкого цилиндрического сопряжения;
 - сделать вывод, сравнив значения характеристик посадок;
- изобразить сопряжения подшипника с валом и корпусом, вал и корпус отдельно. Дать простановку размеров с обозначением посадок, отклонений формы расположения поверхностей и шероховатости.

Исходные данные:

По предпоследней цифре номера варианта

No	0	1	2	3	4	5	6	7	8	9
ГОСТ	27365–87	8328–75	23179–78	333–79	27365–87	8328–75	333–79	27365–87	8328–75	333–79
Класс точности	0	6	5	0	6	5	0	6	5	0
d вн.к	35	65	75	110	90	45	65	80	90	140

По последней цифре номера варианта

No	0	1	2	3	4	5	6	7	8	9
Радиаль-										
ная	12000	9000	20000	28000	18000	15000	25000	30000	10000	24000
нагрузка	12000	7000	20000	20000	10000	15000	23000	20000	10000	2.000
<i>R</i> , H										
Вращаю-										
щаяся	вал	вал	корпус	вал	корпус	корпус	вал	вал	корпус	корпус
деталь										
Харак- теристика нагрузки	Умеренная с малой вибрацией	С толчками и вибрацией	Умеренная с малой вибрацией	С толчками и вибрацией	С толчками и вибрацией	Умеренная с малой вибрацией	С толчками и вибрацией	С толчками и вибрацией	С толчками и вибрацией	Умеренная с малой вибрацией

Методические указания к заданию № 3

Для сокращения номенклатуры подшипников наружного кольца с корпусом осуществляются по системе вала, а посадки внутреннего кольца с валом - по системе отверстия. Однако поле допуска на диаметр отверстия внутреннего кольца подшипника расположено в «минус» от номинального размера, а не «плюс», как у обычного основного отверстия. Для подшипников колец корпусами соединения валами применяются подшипниковые посадки. Отличие этих посадок от посадок по ГОСТ 25347-82 состоит в том, что зазоры и натяги в них имеют другие величины. Это вызвано тем, что предельные отклонения размеров колец по ГОСТ 520-2002 отличны от отклонений, установленных ГОСТ 25347-82. Соединение колец подшипников с валами и отверстиями в корпусах, по сравнению с обычными гладкими цилиндрическими соединениями, может давать другой характер посадок.

Выбор посадки для циркуляционно нагруженного кольца производится в зависимости от диаметра кольца и интенсивности

радиальной нагрузки (прил. 9):

$$P_R = \frac{R}{h} K_1 K_2 K_3, \tag{13}$$

где P_R – интенсивность радиальной нагрузки, Н/мм;

R — радиальная нагрузка, H;

b – ширина посадочного места подшипника, мм;

 K_1 – динамический коэффициент, зависящий от условий эксплуатации;

 K_2 — коэффициент, учитывающий ослабление натяга при полом вале;

 K_3 – коэффициент, учитывающий неравномерность распределения нагрузки в двурядных подшипниках при действиях на подшипник осевой силы.

Основное отклонение выбирается по таблице прил. 11.

При местном виде нагружения выбор конкретной посадки производится по справочным таблицам (прил. 10) в зависимости от:

- диаметра кольца;
- конструкции корпуса (разъемный, неразъемный);
- условий эксплуатации.

Основное отклонение выбирается по таблице прил. 11.

Номер квалитета сопрягаемых с подшипником качения деталей определяется в зависимости от класса точности подшипника по таблице прил. 4. Подшипниковые посадки обозначаются одним полем допуска – полем допуска сопрягаемой с подшипниковым кольцом детали.

Отклонения формы расположения поверхностей, шероховатость поверхностей и величину биения определить по таблицам прил. 5, 6, 7, 8.

Пример:

Выполнить действия, предусмотренные условием задания № 3, для следующих исходных данных:

ΓΟCT 23179–78;

класс точности подшипника -4; радиальная нагрузка -R = 14000 H; вращающаяся деталь - вал; характер нагрузки - умеренная с малой вибрацией; диаметр внутреннего кольца подшипника -d = 40 мм.

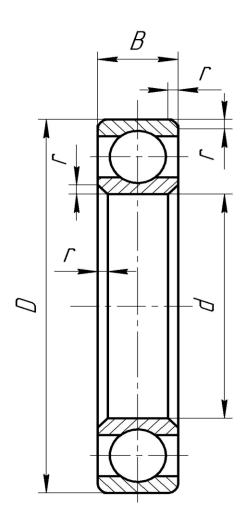


Рис. 5. Эскиз подшипника (ГОСТ 23179–78)

1. Определить характер нагружения наружного и внутреннего колец подшипника.

Учитывая, что вращающееся кольцо подшипника нагружено циркуляционно (Ц), а невращающееся — нагружено местно (М), изобразим кинематическую схему нагружения колец подшипника (рис. 6). (На схеме указать подвижное и неподвижное кольца подшипника, виды нагружения каждого из колец подшипника).

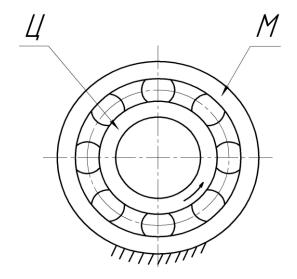


Рис. 6. Кинематическая схема нагружения колец подшипника

2. Выбрать посадки для внутреннего и наружного колец подшипника.

По ГОСТ 23179–78 определяем:

- диаметр наружного кольца подшипника -D = 52 мм;
- номинальная ширина подшипника -B = 8 мм;
- минимальный предельный размер монтажной фаски подшипника $r_{smin}=0.3\,$ мм.

Для нагруженного циркуляционно кольца подшипника посадку выбираем в зависимости от диаметра внутреннего кольца и величины интенсивности радиальной нагрузки:

$$P_R = \frac{14000}{7,4} \cdot 1 \cdot 1 \cdot 1 = 1891,89 \text{ H/mm}$$

b – ширина посадочного места

$$b = B - 2r_{\text{smin}} = 8 - 2 \cdot 0.3 = 7.4 \text{ MM};$$

$$K_1 = 1;$$
 [2, табл. III–14]

$$K_2 = 1;$$
 [2, табл. III–15]

$$K_3 = 1$$
. [2, табл. III–16]

Посадка внутреннего кольца на вал - n5 [2, с. 79, табл. III-13] Посадка наружного кольца в корпус - H6 [2, с. 78, табл. III-11]

3. Построить схемы расположения полей допусков сопряжений колец подшипника.

Предельные отклонения полей допусков основных деталей посадок внутреннего и наружного колец подшипника:

$$\emptyset 40L4 - ES = 0$$
 мкм [6, с. 19, табл. 10] $EI = -5$ мкм [6, с. 19, табл. 11] $ei = -7$ мкм

Предельные отклонения полей допусков вала и корпуса:

$$\emptyset 40n5 - es = +28 \text{ MKM}$$
 $ei = +17 \text{ MKM}$
[13, c. 13]

$$\emptyset 52H6 - ES = +19 \text{ MKM}$$
 [13, c. 20]

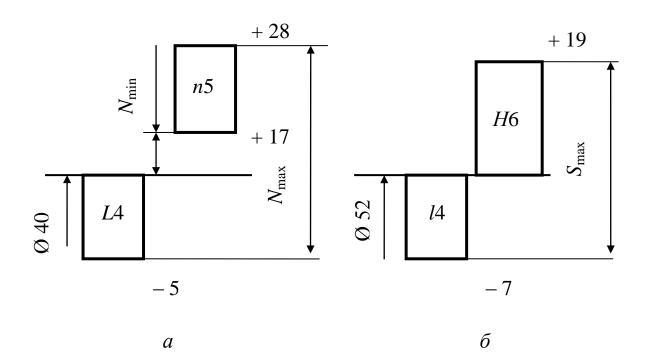


Рис. 7. Схемы расположения полей допусков:

a — посадка внутреннего кольца на вал;

 δ – посадка наружного кольца в корпус

4. Рассчитать величины зазоров и натягов для подшипникового сопряжения.

Посадка внутреннего кольца на вал $\emptyset 40 \frac{L4}{n5}$:

$$N_{\text{max}} = es - EI = 28 - (-5) = 33 \text{ MKM};$$

$$N_{\min} = ei - ES = 17 - 0 = 17 \text{ MKM};$$

$$TN = N_{\text{max}} - N_{\text{min}} = 33 - 17 = 16 \text{ MKM}.$$

Посадка наружного кольца в корпус \emptyset 52 $\frac{H6}{14}$:

$$S_{\text{max}} = ES - ei = 19 - (-7) = 26 \text{ MKM};$$

$$S_{\min} = EI - es = 0 - 0 = 0 \text{ MKM};$$

$$TS = S_{\text{max}} - S_{\text{min}} = 26 - 0 = 26 \text{ MKM}.$$

5. Построить схемы расположения полей допусков сопряжения по стандартной посадке.

Заменить основное отверстие L4 на H6, основной вал l4 — на h5 (квалитет для отверстия назначается на единицу грубее, чем для вала).

Определить значения предельных отклонений полей допусков основных деталей:

$$\emptyset 40H6 - ES = +16 \text{ MKM}$$

 $EI = 0 \text{ MKM}$ [13, c. 20]

$$\emptyset 52h5 - es = 0 \text{ MKM}$$
 $ei = -13 \text{ MKM}$
[13, c. 13]

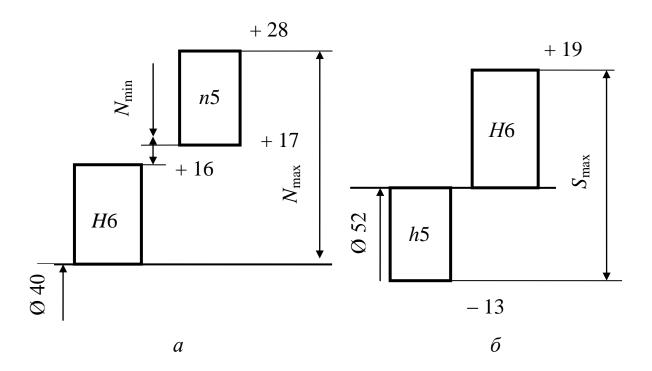


Рис. 8. Схемы расположения полей допусков: a – посадка внутреннего кольца на вал;

 δ – посадка наружного кольца в корпус

6. Рассчитать величины предельных зазоров и натягов.

Посадка внутреннего кольца на вал $\emptyset 40 \frac{H6}{n5}$:

$$N_{
m max} = es - EI = 28 - 0 = 28$$
 мкм;
 $N_{
m min} = ei - ES = 17 - 16 = 1$ мкм;
 $TN = N_{
m max} - N_{
m min} = 28 - 1 = 27$ мкм.

Посадка наружного кольца в корпус \emptyset 52 $\frac{H6}{h5}$:

$$S_{\text{max}} = ES - ei = 19 - (-13) = 32 \text{ MKM};$$

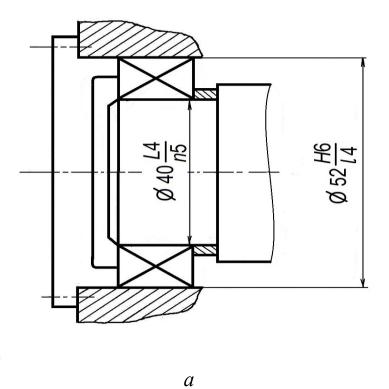
 $S_{\text{min}} = EI - es = 0 - 0 = 0 \text{ MKM};$
 $TS = S_{\text{max}} - S_{\text{min}} = 32 - 0 = 32 \text{ MKM}.$

7. Сделать вывод, сравнив значения характеристик посадок.

Заполнить сводную таблицу (табл. 1).

Таблица 1 Зазоры и натяги в сопряжениях с подшипниками качения и для обычных гладких цилиндрических деталей

		Зазо	ры,	Нат	яги,	Допуск
Обозначение	Характер	Mł	МКМ		КМ	посадки
посадки	посадки					TN;TS;
		S_{\max}	S_{\min}	$N_{\rm max}$	$N_{ m min}$	TN(TS),
		Пих	111111	THUZ.	11111	MKM
Ø40n5				33	17	16
(подшипниковая)	натяг					
$\varnothing 40\frac{H6}{n5}$ (обычная)	натяг			28	1	27
Ø52H6	зазор	26	0			26
(подшипниковая)	3 a 30p					
\emptyset 52 $\frac{H6}{h5}$ (обычная)	зазор	32	0			32


В результате замены основных деталей подшипникового соединения на основные детали системы ЕСДП, характер соединений остался прежним (с зазором для наружного кольца, с натягом для внутреннего кольца), изменились величины характеристик.

8. Привести пример обозначения подшипника на чертежах.

Обозначить размеры с указанием посадок, отклонения от формы, шероховатость, торцевое биение (рис. 9).

По ГОСТ 3325-85 определяем:

шероховатости	для вала – Ra	<i>i</i> 0,4;	[15, с. 9, та	бл. 3]
шероховатость,	для отверсти:	я корпуса – $Ra \ 0.8$;	[15, с. 9, та	бл. 3]
шероховатость	торцевой пов	верхности – Ra 1,6;	[15, с. 9, та	бл. 3]
отклонение от к	руглости для	я вала – 2 мкм;	[15, с. 11, та	бл. 4]
отклонение	профиля	продольного	сечения	для
вала -2 мкм;			[15, с. 11, та	бл. 4]
отклонение от к	руглости для	и отверстия – 3 мкм	; [15, с. 11, та	бл. 4]
отклонение	профиля	продольного	сечения	для
отверстия – 3 мл	км;		[15, с. 11, та	бл. 4]
величина торце	вого биения -	– 4 мкм.	[15, с. 13, та	бл. 5]

0,002 Ra 0,4 94 750 Ra 0,8

Рис. 9. Обозначения размеров на чертеже: a — сопряжение подшипника с валом и корпусом; δ — вал; ϵ — корпус

ЗАДАНИЕ № 4 НОРМИРОВАНИЕ ЭЛЕМЕНТОВ РЕЗЬБОВОГО СОПРЯЖЕНИЯ

По заданным номинальному наружному диаметру метрической резьбы D, шагу P, степени точности и посадке:

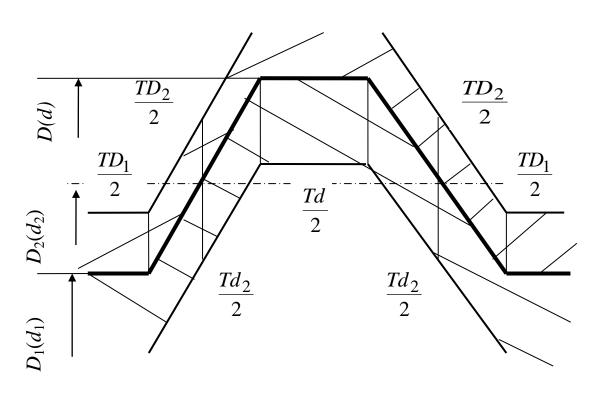
- изобразить графически поля допусков болта и гайки для метрической резьбы;
- найти по стандарту номинальные размеры трех диаметров резьбы, предельные отклонения и указать их на графическом изображении полей допусков;
- определить предельные значения наружного, внутреннего и среднего диаметров болта и гайки;
 - определить допуски диаметров;
- изобразить схему контроля предельными калибрами элементов наружной и внутренней резьбы.

Исходные данные:

По последней цифре номера варианта

No	0	1	2	3	4	5	6	7	8	9
Диаметр	22	60	68	33	52	39	18	27	15	18
резьбы D , мм		00	00	33	32	39	10	21	45	40

По предпоследней цифре номера варианта


Nº	0	1	2	3	4	5	6	7	8	9
Посадка и степень точности	7 <u>G</u> 6e	<u>7H</u> 7g6g	<u>7H</u> 6g	4 <i>H</i> 5 <i>H</i> 4 <i>h</i>	<u>7G</u> 7e6e	<u>6H</u> 6g	<u>6G</u> 6e	<u>7H</u> 8h	6H 6h	<u>7H</u> 7e6e
Шаг резьбы <i>P</i> , мм	1	1,5	2	3	4	2	1	1,5	3	4

Методические указания к заданию № 4

Предельные контуры резьбового соединения метрической

резьбы с полями допусков его элементов для скользящей посадки $\frac{H}{h}$ показаны на рис. 10.

«гайка»

«болт»

Рис. 10. Предельные контуры резьбового соединения метрической резьбы

По ГОСТ 24705–81 (прил. 12) в зависимости от нормального диаметра и шага определить значения наружного d(D), среднего $d_2(D_2)$, внутреннего $d_1(D_1)$ диаметров резьбы, указать их на графическом изображении резьбового сопряжения.

По ГОСТ 16093–81 определить предельные отклонения трех диаметров и указать их на графическом изображении резьбового соединения.

Рассчитать предельные размеры и допуски трех диаметров

по известным формулам:

$$D_2(D_1)_{\text{max}} = D_2(D_1) + ES_{D_2(D_1)};$$
(14)

$$D_2(D, D_1)_{\min} = D_2(D, D_1) + E \tilde{I}_{D_2(D, D_1)};$$
 (15)

$$d_2(d, d_1)_{\max} = d_2(d, d_1) + es_{d_2(d, d_1)};$$
(16)

$$d_2(d)_{\min} = d_2(d) + ei_{d_2(d)}; \tag{17}$$

$$TD_2(TD_1) = ES_{D_2(D_1)} - EI_{D_2(D_1)};$$
 (18)

$$Td_2(Td) = es_{d_2(d)} - ei_{d_2(d)}.$$
 (19)

Величины ES_D , ei_{d1} , D_{\max} , $d_{1\min}$, TD, Td_1 , по условиям взаимозаменяемости, не нормируются.

Пример:

Для резьбы $M20\frac{4H5H}{6h}$, P=2,5 мм выполнить действия, предусмотренные условием задания № 4.

1. Определить номинальные значения внутреннего и среднего диаметров болта и гайки:

$$d(D) = 20 \text{ mm},$$

 $d_2(D_2) = d - 2 + 0.376 = 20 - 2 + 0.376 = 18.376 \text{ mm}, [4, c. 677]$
 $d_1(D_1) = d - 3 + 0.294 = 20 - 3 + 0.294 = 17.294 \text{ mm}. [4, c. 677]$

2. Построить схему расположения полей допусков болта и гайки.

По ГОСТ 16093–81 определить предельные отклонения диаметров болта и гайки (табл. 2). Для заданного резьбового соединения построить графическое изображение полей допусков болта и гайки (рис. 11). (На схеме расположения полей допусков указать номинальные диаметры, предельные отклонения диаметров болта и гайки).

Таблица 2 Предельные отклонения деталей резьбового соединения

Наименование отклонения	отклон	редельні ения диа айки, мк	метров	отклон	редельні ения диа олта, мк	метров
	D	D_2	D_1	d	d_2	d_1
Верхнее	_	+140	+355	0	0	0
Нижнее	0	0	0	-335	-170	_

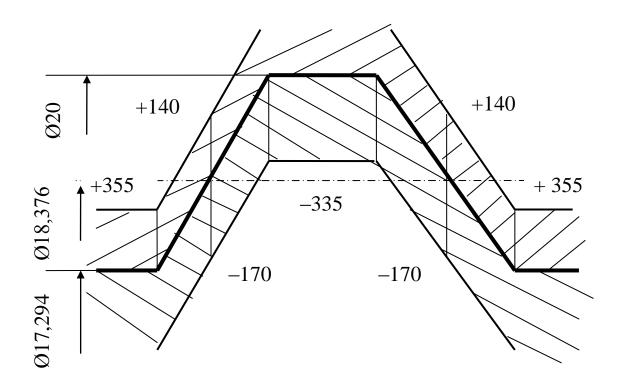


Рис. 11. Графическое изображение полей допусков для резьбы $M\,20\frac{4H\,5H}{6h}$

3. Рассчитать предельные значения диаметров резьбы.

$$D_{\max}$$
 – не нормируется; $D_{\min} = D + EI_D = 20,0 + 0 + 20,0$ мм; $D_{2\max} = D_2 + ES_{D_2} = 18,376 + 0,140 = 18,516$ мм; $D_{2\min} = D_2 + EI_{D_2} = 18,376 + 0 = 18,376$ мм; $D_{1\max} = D_1 + ES_{D_1} = 17,294 + 0,355 = 17,649$ мм; $D_{1\min} = D_1 + EI_{D_1} = 17,294 + 0 = 17,294$ мм;

$$d_{\max}=d+es_d=20,0+0=20,0$$
 мм; $d_{\min}=d+ei_d=20,0+(-0,335)=19,665$ мм; $d_{2\max}=d_2+es_{d_2}=18,376+0=18,376$ мм; $d_{2\min}=d_2+ei_{d_2}=18,376+(-0,170)=18,206$ мм; $d_{1\max}=d_1+es_{d_1}=17,294+0=17,294$ мм; $d_{1\min}$ — не нормируется.

4. Рассчитать допуски диаметров резьбы.

$$TD$$
 – не нормируется;
$$TD_2 = ES_{D_2} - EI_{D_2} = 0,140 - 0 = 0,140 \text{ мм};$$

$$TD_1 = ES_{D_1} - EI_{D_1} = 0,355 - 0 = 0,355 \text{ мм};$$

$$Td = es_d - ei_d = 0 - (-0,335) = 0,335 \text{ мм};$$

$$Td_2 = es_{d_2} - ei_{d_2} = 0 - (-0,170) = 0,170 \text{ мм};$$

$$Td_1 - \text{не нормируется}.$$

5. Изобразить схему контроля предельными калибрами элементов наружной и внутренней резьбы.

Схемы контроля деталей резьбового соединения предельными калибрами изображены на рис. 12, 13.

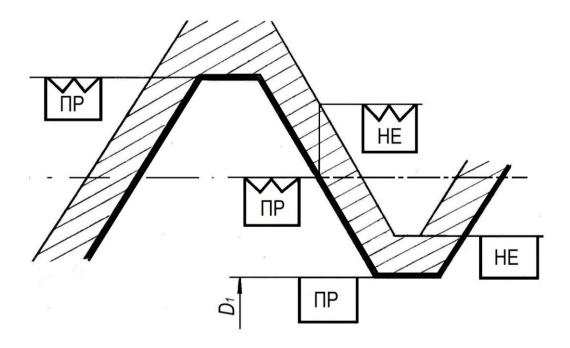


Рис. 12. Схема контроля предельными калибрами наружной резьбы

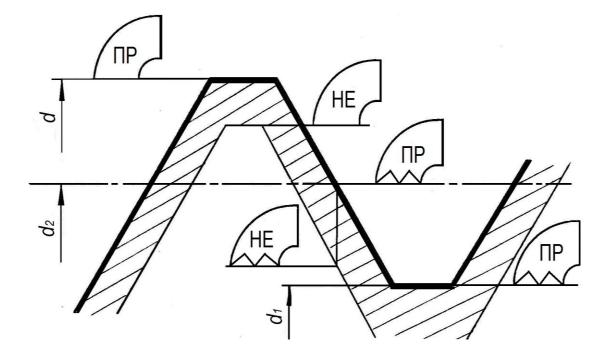


Рис. 13. Схема контроля предельными калибрами внутренней резьбы

ЗАДАНИЕ № 5 РАСЧЕТ И ВЫБОР ПОСАДКИ С ЗАЗОРОМ

Выбрать посадку:

- а) для подшипника скольжения на основе расчета зазора, обеспечивающего наивыгоднейшие условия работы;
- б) для прессового соединения, обеспечивающего передачу заданного крутящего момента и прочность детали-втулки.

Вариант **A** выполняют студенты, имеющие номер варианта от **00** до **49**, вариант \mathbf{F} – от **50** до **99**.

Исходные данные:

Вариант А

	Для сопряжения с зазором										
Пополетия	По <i>предпоследней</i> цифре номера варианта										
Параметры	0	1	2	3	4						
d, mm	50	60	70	80	85						
l, mm	80	85	90	100	110						
Поположить	По <i>последней</i> цифре номера варианта										
Параметры	0	1	2	3	4						
<i>п</i> , об/мин	700	750	850	800	900						
p , кг/см 2	9	7	8	6	10						
μ, cΠ	17	20	14	22	18						
Поромотри	Пол	<i>последней</i>	і цифре но	омера вар	ианта						
Параметры	5	6	7	8	9						
n, об/мин	550	500	650	600	1000						
p, кг/см ²	6	7	8	9	10						
μ, сП	25	30	16	28	21						

Примечание:

d – номинальный диаметр сопряжения;

l — длина сопряжения;

р – удельное давление на поверхности контакта;

μ – динамический коэффициент вязкости смазки.

Вариант Б

Для сопряжения с натягом					
Параметры	По <i>предпоследней</i> цифре номера варианта				
	5	6	7	8	9
d, mm	80	70	50	100	120
d_2 , mm	150	120	80	220	240
Параметры	По <i>последней</i> цифре номера варианта				
	0	1	2	3	4
$M_{ m kp}$, кгс \cdot мм	$1,6.10^5$	$1,8\cdot10^{5}$	2.10^{5}	1.10^{5}	$3,2\cdot10^5$
l, mm	0,8 <i>d</i>	0,65 <i>d</i>	0,6 <i>d</i>	0,5 <i>d</i>	0,7 <i>d</i>
материал	Сталь	Сталь	Сталь	Сталь	Сталь
деталей	50	45	40	35	30
σT, κΓC/MM ²	38	36	34	32	30
Параметры	По <i>последней</i> цифре номера варианта				
	5	6	7	8	9
$M_{ m kp}$, кгс \cdot мм	4.10^{5}	5.10^{5}	$2,5\cdot10^5$	$1,4\cdot10^5$	$4,5\cdot10^5$
l, mm	0,7 <i>d</i>	0,85 <i>d</i>	0,8d	0,65 <i>d</i>	0,55 <i>d</i>
материал	Сталь	Сталь	Сталь	Сталь	Сталь
деталей	50	45	40	35	30
$\sigma_{\rm t}$, kgc/mm ²	38	36	34	32	30

Примечание:

d – номинальный диаметр сопряжения;

 d_2 – наружный диаметр втулки;

l — длина сопряжения;

 $\sigma_{\scriptscriptstyle T}-$ предел текучести материала втулки и вала.

Методические указания к заданию № 5

Вариант А

Выбор посадки для подшипника скольжения

Цель предлагаемого расчета — нахождение оптимального зазора, обеспечивающего при определенных сочетаниях конструктивных и эксплуатационных факторов жидкостные условия трения между вкладышем подшипника и цапфой вала.

В гидродинамических подшипниках жидкостное трение создается в том случае, когда смазочное масло увлекается вращающейся цапфой в постепенно суживающийся клиновой зазор между цапфой и вкладышем подшипника и возникает гидродинамическое давление, превышающее нагрузку на опору и стремящееся расклинить поверхности цапфы и вкладыша, и смещается по направлению вращения в нагруженной зоне. На рис. 14 положение цапфы в неподвижном состоянии показано штриховой линией, при этом зазор

$$S = D - d. (20)$$

При определенной скорости вращения вала создается равновесие гидродинамического давления и сил, действующих на опору. Наименьшая толщина масляного слоя в месте наибольшего сближения поверхностей цапфы и вкладыша определяется следующей зависимостью:

$$h_{\min} = S \cdot 0.5(1 - \chi),$$
 (21)

где χ – относительный эксцентриситет, $\chi = \frac{e}{S \cdot 0.5}$;

e – абсолютный эксцентриситет.

Для обеспечения жидкостного трения необходимо отсутствие контакта микронеровностей цапфы и вкладыша, т. е. неразрывность слоя смазки. Это достигается при толщине масляного слоя:

$$h_{\min} \ge h_{\text{\tiny M.T}} \ge k_{\text{\tiny M.T}} \cdot (R_{\text{z}1} + R_{\text{z}2} + \Delta),$$
 (22)

где $h_{\text{ж.т}}$ — толщина масляного слоя, при котором обеспечивается жидкостное трение;

 $k_{\text{ж.т}}$ — коэффициент запаса надежности по толщине масляного слоя;

 $R_{\rm z1},\,R_{\rm z2}$ — высота микронеровностей вкладыша подшипника и цапфы вала;

 Δ — добавка, учитывающая отклонение нагрузки, скорости, температуры от расчетных значений, а также механические включения в масле и другие неучтенные факторы (Δ = 1 ÷ 2 мкм).

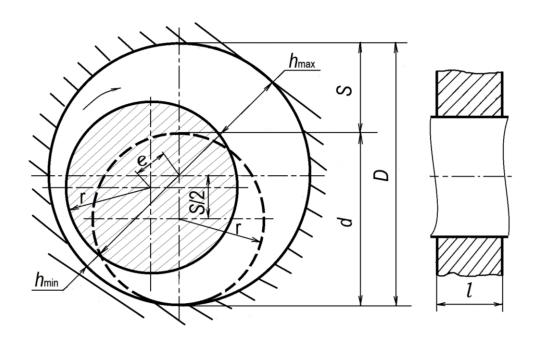


Рис. 14. Схема расположения цапфы вала в неподвижном состоянии (пунктирная линия) при установившемся режиме работы подшипника

Одновременно с обеспечением жидкостного трения необходимо, чтобы подшипник обладал требуемой несущей способностью, характеризуемой радиальной силой R:

$$R = \frac{1,07 \cdot 10^{-9} \,\mu nldC_R}{\Psi^2},\tag{23}$$

где R – радиальная сила, кгс;

 μ – динамическая вязкость масла, с Π ;

n — частота вращения, об/мин;

l — длина подшипника, см;

d – диаметр подшипника, см;

 C_R – безразмерный коэффициент нагруженности подшипника, зависящий от χ и отношения l/d;

 ψ – относительный зазор, равный S/d.

Порядок расчета гидродинамического подшипника скольжения рассмотрим на примере.

Пример

Выбрать посадку для подшипника скольжения, имеющего следующие конструктивные параметры и условия работы:

диаметр цапфы d=90 мм; длина подшипника l=110 мм; частота вращения n=750 об/мин; удельное давление на поверхности контакта p=10 кгс/см²; вязкость масла $\mu=20$ сП.

Проектный расчет.

1. Рассчитать окружную скорость цапфы.

$$V = \frac{\pi dn}{1000 \cdot 60} = \frac{3,14 \cdot 90 \cdot 750}{1000 \cdot 60} = 3,53 \text{ m/c}.$$

2. Рассчитать относительный диаметральный зазор.

$$\psi = 0.8 \cdot 10^{-3} \cdot \sqrt[4]{V} = 0.8 \cdot 10^{-3} \sqrt[4]{3.53} = 0.0011$$
 mm.

3. Рассчитать абсолютный диаметральный зазор.

$$S = \psi \cdot d = 0,0011 \cdot 90 = 0,099$$
 _{MM.}

4. Выбрать посадку с зазором.

Рассчитанный в п. 3 диаметральный зазор принимаем за оптимальный зазор. По ГОСТ 25347–82 выбираем посадку, средний зазор которой наиболее близок к оптимальному зазору. Такой посадкой в данном случае является $\emptyset 90 \frac{H7}{e7}$. Схема расположения полей допусков этой посадки приведена на рис. 15.

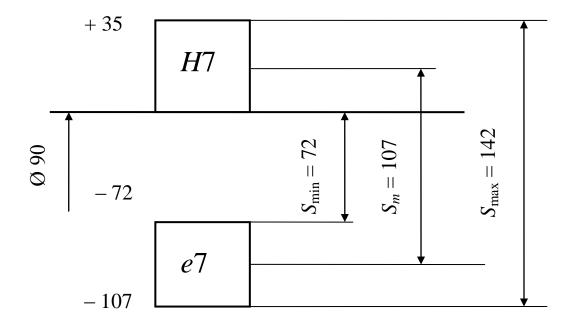


Рис. 15. Схема расположения допусков посадки $\varnothing 90\frac{H7}{e7}$

Для данной посадки $S_{\max} = 0.142$ мм; $S_{\min} = 0.072$ мм; $S_m = 0.107$ мм.

5. Выполнить проверочный расчет.

Коэффициент нагруженности подшипника определяем по формуле (23), в которой принято R/dl=p:

$$C_R = \frac{p \cdot \psi^2}{1,07 \cdot 10^{-9} \mu n} = \frac{10 \cdot 0,0011^2}{1,07 \cdot 10^{-9} \cdot 20 \cdot 750} = 0,75.$$

В зависимости от величины C_{R} и отношения $\frac{l}{d}$ определить относительный эксцентриситет χ .

Для $C_{\rm R}=0.75$ и отношения $\frac{l}{d}=\frac{110}{90}=1.22$, величина относительного эксцентриситета равна $\chi=0.4$. [3, c. 284].

Наименьшая толщина масляного слоя определяется по формуле (21):

$$h_{\min} = \frac{0.107}{2} \cdot (-0.40) = 0.0321 \text{ MM}.$$

Коэффициент запаса надежности по толщине слоя смазки определяем на основании формулы (22):

$$k_{\text{\tiny M.T}} = \frac{h_{\text{min}}}{R_{z1} + R_{z2} + \Delta}.$$

Высоту микронеровностей R_z выбираем в зависимости от квалитетов сопрягаемых размеров деталей по табл. 18.1 прил. 18.

Для деталей посадки
$$\varnothing 90\frac{H7}{e7}$$
 $R_{z1}=6,3$ мкм; $R_{z2}=3,2$ мкм.

Тогда

$$k_{\text{\tiny M.T}} = \frac{32,1}{6,3+3,2+2} = 2,79 > 2.$$

Так как $k_{\text{ж.т}} > 2$, то выбранная посадка соответствует условиям надежной работы подшипника в режиме жидкостного трения.

В случае если $k_{\text{ж.т}} < 2$, необходимо назначить ближайшее меньшее стандартное значение высоты микронеровностей R_z и вновь произвести проверку на обеспечение жидкостного трения в сопряжении.

Вариант Б

Выбор посадки для прессового соединения

Посадки с натягом предназначены для получения неподвижных неразъемных соединений без дополнительного крепления деталей (рис. 16). Относительная неподвижность деталей обеспечивается за счет сил сцепления (трения), возникающих на контактирующих поверхностях вследствие их деформации, создаваемой натягом при сборке соединения.

Величина натяга N определяется разностью диаметров вала и внутренним диаметром втулки до сборки. При запрессовке соединения происходит деформация растяжения втулки на

величину N и одновременно деформация сжатия вала на величину N_d , причем $N=N_D+N_d$.

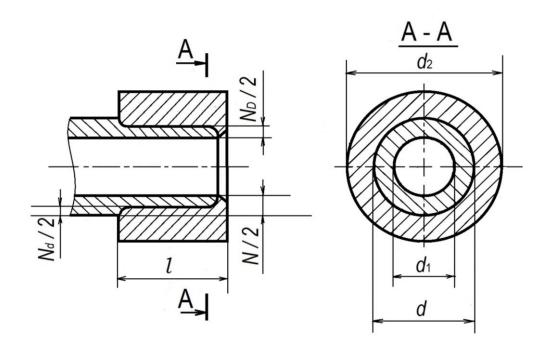


Рис. 16. К расчету посадок с натягом

Предельные значения натягов выбранной посадки должны удовлетворять следующим условиям:

1) при наименьшем натяге должна обеспечиваться прочность соединений, т. е. не должно быть относительного поворота деталей от действия внешнего крутящегося момента или осевого усилия или их совместного действия.

Например, при нагружении крутящим моментом это условие будет выполнено, если

$$M_{\rm \kappa p} < M_{\rm Tp},$$
 (24)

где $M_{\rm кp}$ – наибольший крутящий момент, прикладываемый к одной детали;

 $M_{\rm тp}$ – момент трения, зависящий от натяга, размеров соединяемых деталей, шероховатости поверхности и других факторов;

2) при наибольшем натяге должна обеспечиваться

прочность соединяемых деталей, т. е. наибольшее напряжение, возникающее в материалах деталей, не должно превышать допустимого значения.

Величина наименьшего расчетного натяга при осевом нагружении

$$N_{\text{min pacy}} = \frac{p}{\pi l f_1} \cdot \left(\frac{C_1}{E_1} + \frac{C_2}{E_2}\right);$$
 (25)

при нагружении крутящим моментом

$$N_{\text{min pacq}} = \frac{2M\kappa p}{\pi dl f_2} \cdot \left(\frac{C_1}{E_1} + \frac{C_2}{E_2}\right), \tag{26}$$

где p – осевая сила;

l — длина соединения;

 f_1 и f_2 – коэффициенты трения сцепления соответственно при продольном смещении и при относительном вращении деталей; при сборке с помощью пресса f=0.08; при сборке с нагревом охватывающей детали или с охлаждением охватываемой детали f=0.14;

d – номинальный диаметр сопрягаемых поверхностей;

 E_1 и E_2 — модуль упругости материала соединяемых втулки и вала (для стали $E=2,1\cdot 10^4$ кгс/мм 2);

 C_1 и C_2 – коэффициенты, определяемые по следующим зависимостям:

$$C_{1} = \frac{1 + \left(\frac{d}{d_{2}}\right)^{2}}{1 - \left(\frac{d}{d_{2}}\right)^{2}} + \mu_{1}; \quad C_{2} = \frac{1 + \left(\frac{d_{1}}{d}\right)^{2}}{1 - \left(\frac{d_{1}}{d}\right)^{2}} - \mu_{2}; \quad (27)$$

 d_1 – диаметр отверстия вала;

 d_2 – наружный диаметр втулки (см. рис. 16);

 μ_1 и μ_2 — коэффициенты Пуассона для втулки и вала (для стали $\mu=0,3$, для чугуна $\mu=0,25$).

Для учета уменьшения посадочного натяга за счет смятия микронеровностей вводится поправка U, которая для материалов с одинаковыми свойствами определяется по следующей зависимости:

$$U = 2k \cdot (Rz_1 + Rz_2), \tag{28}$$

где k — коэффициент, учитывающий величину смятия микронеровностей отверстия втулки и вала (при механической запрессовке при нормальной температуре без смазки $k=0.25\div0.5$).

Значения Rz_1 и Rz_2 выбираются в зависимости от принятых полей допусков деталей сопряжения по табл. 18.2 прил. 18.

Наименьший функциональный натяг, при котором обеспечивается прочность соединения, будет равен

$$N_{\min F} = N_{\min \text{ pacy}} + U. \tag{29}$$

По этому натягу подбирается ближайшая посадка по ГОСТ 25347–82. Величина наименьшего функционального натяга должна быть не больше наименьшего натяга выбранной посадки.

Условие прочности соединяемых деталей заключается в отсутствии пластической деформации на контактных поверхностях вала и втулки при наибольшем табличном натяге:

$$P \le P_{\text{ДОП}}. \tag{30}$$

Давление при наибольшем табличном натяге

$$P = \frac{N \max T}{d \cdot \left(\frac{C_1}{E_1} + \frac{C_2}{E_2}\right)}.$$
(31)

Допустимое давление на контактирующей поверхности втулки

$$P_{\text{ДОП}} = 0.58\sigma_{\text{T}} \cdot \left[1 - \left(\frac{d}{d_2} \right)^2 \right], \tag{32}$$

на поверхности вала

$$P_{\text{ДОП}} = 0.58\sigma_{\text{T}} \cdot \left[1 + \left(\frac{d_1}{d} \right)^2 \right], \tag{33}$$

где $\sigma_{\scriptscriptstyle T}$ – предел текучести материала деталей при растяжении.

Пример

Рассчитать и выбрать посадку с натягом для соединения, имеющего следующие конструктивные данные и условия работы:

$$M_{\rm Kp} = 4,2 \cdot 10^5 \; {\rm Krc} \cdot {\rm mm};$$
 $d=140 \; {\rm mm};$ $d_1=0 \; {\rm mm} \; ({\rm для} \; {\rm всех} \; {\rm вариантов});$ $d_2=230 \; {\rm mm};$ $\sigma_{\rm T}=34 \; {\rm Krc/} \; {\rm mm}^2;$ $l=0,8d;$ материал деталей — сталь 40.

1. Рассчитать наименьший натяг.

Принимаем:

коэффициент трения сцепления для сборки под прессом: $f_1, f_2 = 0.08;$

модуль упругости для стали: $E_1 = E_2 = 2,1 \cdot 10^4 \text{ кгс/мм}^2$; коэффициент Пуассона: μ_1 , $\mu_2 = 0,3$; коэффициенты C_1 и C_2 определяем по формуле (27):

$$C_1 = \frac{1 + \left(\frac{140}{230}\right)^2}{1 - \left(\frac{140}{230}\right)^2} + 0.3 = 2.48,$$

$$C_2 = \frac{1 + \left(\frac{0}{140}\right)^2}{1 - \left(\frac{0}{140}\right)^2} - 0,3 = 0,7.$$

Наименьший расчетный натяг определяем по формуле (26):

$$N_{\text{min.pacq}} = \frac{2 \cdot 4, 2 \cdot 10^5}{3,14 \cdot 140 \cdot 112 \cdot 0,08} \cdot (\frac{2,48}{2,1 \cdot 10^4} + \frac{0,7}{2,1 \cdot 10^4}) = 0,032 \text{ MM}.$$

2. Рассчитать величину минимального функционального натяга.

Так как величина наименьшего расчетного натяга имеет небольшую величину, то предварительно принимаем, что отверстие будет изготавливаться по 7-му квалитету, а вал — по 6-му квалитету. В этом случае $R_{z_1}=12,5\,\mathrm{mkm};\;R_{z_2}=6,3\,\mathrm{mkm}\;$ (табл. 18.2 прил. 18). Принимаем величину коэффициента k=0,4. Поправку U для учета уменьшения посадочного натяга за счет смятия микронеровностей определяем по формуле (28):

$$U = 2 \cdot 0.4 \cdot (2.5 + 6.3) = 15 \text{ MKM}.$$

Наименьший функциональный натяг определяем по формуле (29):

$$N_{\min F} = 0.032 + 0.015 = 0.047 \text{ MM}.$$

3. Выбрать посадку с натягом.

С учетом величины минимального функционального натяга и выбранным значениям квалитета точности подбираем по ГОСТ 25347–82 ближайшую посадку, удовлетворяющую требованиям. Такой посадкой будет $\emptyset 140 \frac{H7}{s6}$, для которой $N_{\min}=52$ мкм, $N_{\max}=117$ мкм, $N_m=84,5$ мкм. Схема расположения полей допусков этой посадки приведена на рис. 17.

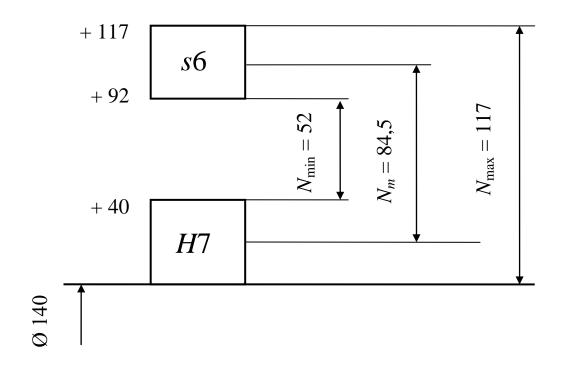


Рис. 17. Схема расположения полей допусков \emptyset 140 $\frac{H7}{s6}$

4. Выполнить проверочный расчет.

Проверяем прочность соединяемых деталей при наибольшем табличном натяге $N_{\rm max\ T}$. Для этого по формуле (31) находим давление при указанном натяге:

$$P = \frac{0,117}{140 \cdot \left(\frac{2,48}{2,1 \cdot 10^4} + \frac{0,7}{2,1 \cdot 10^4}\right)} = 5,52 \text{ kgc/mm}^2.$$

По уравнению (32) находим допустимое давление на контактирующей поверхности втулки:

$$P_{\text{доп}} = 0,58\sigma_{\text{T}} \left[1 - \left(\frac{d}{d_2} \right)^2 \right] = 0,58 \cdot 34 \left[1 - \left(\frac{140}{230} \right)^2 \right] = 12,41 \text{ кгс/мм}^2.$$

По уравнению (33) находим допустимое давление на поверхности вала:

$$P_{\text{ДОП}} = 0.58 \sigma_{\text{T}} \left[1 - \left(\frac{d_1}{d} \right)^2 \right] = 0.58 \cdot 34 \left[1 - \left(\frac{0}{140} \right)^2 \right] = 19,72 \text{ kgc/mm}^2.$$

Условие прочности деталей, которое заключается в отсутствии пластической деформации, выполняется, так как $P < P_{\text{лоп}}$.

Сравнивая допустимое давление с давлением, возникающим при наибольшем табличном натяге, определяем запас прочности втулки и вала:

$$k_1 = 12,41/5,52 = 2,25; k_2 = 19,72/5,52 = 3,57.$$

ЗАДАНИЕ № 6 РЕШЕНИЕ РАЗМЕРНЫХ ЦЕПЕЙ

По заданным номинальным значениям составляющих размеров размерной цепи A_1 , A_2 , A_3 , A_4 , A_5 , номинальному значению замыкающего звена A_{Δ} и допуска на него TA_{Δ} определить допуски на составляющие размеры, решив прямую задачу двумя методами:

- методом на максимум-минимум;
- теоретико-вероятностным методом, если процент брака составляет 0,27 % и погрешности всех звеньев подчиняются закону нормального распределения.

После решения прямой задачи решить обратную задачу. В качестве исходных данных использовать заданные номинальные значения составляющих размеров размерной цепи A_1 , A_2 , A_3 , A_4 , A_5 , номинальное значение замыкающего звена A_{Δ} и допуски на составляющие размеры, полученные в результате решения прямой задачи методом максимума-минимума.

Исходные данные:

По предпоследней цифре номера варианта

No	0	1	2	3	4	5	6	7	8	9
Размер A_1 , мм	35	22	36	45	35	55	25	20	60	40
Размер A_2 , мм	4	4	16	15	5	8	10	10	20	5
Размер A_3 , мм	48	32	32	40	34	58	44	34	70	60
Размер A_4 , мм	2	5	9	9	5	8	10	10	9	4
Размер A_5 , мм	24	24	26	24	14	24	44	39	44	34
Размер A_{Δ} , мм	5	5	5	5	5	5	5	5	5	5

По последней цифре номера варианта

No	0	1	2	3	4	5	6	7	8	9
Допуск	0.5	0.8	0.7	1.0	1 2	1 5	0.6	1,7	2.0	1 3
размера TA_{Δ} , мм	0,5	0,0	0,7	1,0	1,4	1,5	0,0	1,/	2,0	1,3



Рис. 18. Сборочный чертеж

Методические указания к заданию № 6

Прямая задача

При решении прямой задачи целью расчета является определение допусков и предельных отклонений составляющих размеров по заданным номинальным размерам замыкающего звена.

Порядок расчета следующий:

1. Определить среднее число единиц допуска.

При решении методом максимума-минимума

$$a_m = \frac{TA_{\Delta}}{\sum_{\substack{j=1\\j=1}}^{\sum i_j}},\tag{34}$$

где TA_{Δ} — допуск замыкающего звена, мкм; m — общее число звеньев размерной цепи. При решении теоретико-вероятностным методом

$$a_{m} = \frac{TA_{\Delta}}{t_{\Delta} \sqrt{\sum_{j=1}^{m=1} i_{j}^{2} \lambda_{j}^{2}}}.$$
(35)

В знаменателе формул (34) и (35) приведена сумма единиц допусков составляющих размеров. Значения единиц допуска для размеров до 500 мм приведены в прил. 13.

Коэффициент риска t_{Δ} выбирается в зависимости от принятого риска. Ряд значений коэффициента P приведен ниже.

При нормальном законе распределения коэффициента $\lambda_j^2 = 1/9$, при законе распределения Симпсона (треугольника) $\lambda_j^2 = 1/5$, при законе равной вероятности $\lambda_j^2 = 1/3$.

- 2. В зависимости от значения a_m выбрать ближайший квалитет (прил. 14).
- ГОСТ 25346-89 (прил. 14) По найти допуски составляющих звеньев. Для увеличивающих размеров отклонения отверстий ДЛЯ основных H). назначаются как Для размеров отклонения назначаются уменьшающих как ДЛЯ основных валов (по h).

Правильность решения прямой задачи проверить согласно

основному уравнению размерной цепи для соответствующего метода решения:

а) при решении методом максимума-минимума

$$\sum_{j=1}^{m=1} TA_j \le TA_{\Delta}; \tag{36}$$

б) при решении теоретико-вероятностным методом

$$t_{\Delta} \sqrt{\sum_{j=1}^{m=1} \lambda_j^2 \cdot T A_j^2} \le T A_{\Delta}. \tag{37}$$

Обратная задача

Решением обратной задачи проверяется степень рациональности простановки размеров на чертеже, а также правильность назначения допусков и предельных отклонений составляющих размеров при решении прямой задачи.

При решении задачи методом максимума-минимума порядок расчетов следующий:

1. Определить нормальный размер замыкающего звена

$$A_{\Delta} = \sum_{j=1}^{n} A_{j} \, y_{B} - \sum_{j=n+1}^{n+p} A_{j} \, y_{M}, \tag{38}$$

где n — число увеличивающих размеров;

p – число уменьшающих размеров.

2. Определить предельные размеры замыкающего звена

$$A_{\Delta \max} = \sum_{j=1}^{n} A_j y_{\text{Bmax}} - \sum_{j=n+1}^{n+p} A_j y_{\text{Mmin}},$$
(39)

$$A_{\Delta \min} = \sum_{j=1}^{n} A_j y_{\text{Bmin}} - \sum_{j=n+1}^{n+p} A_j y_{\text{max}}, \tag{40}$$

3. Определить предельные отклонения замыкающего звена

$$ES \, \Phi_{\Delta} = A_{\Delta \, \text{max}} - A_{\Delta}; \tag{41}$$

$$EI \triangleleft_{\Lambda} = A_{\Lambda \min} - A_{\Lambda}. \tag{42}$$

4. Определить допуск замыкающего звена

$$TA_{\Delta} = \sum_{j=1}^{n-1} TA_j. \tag{43}$$

При решении задачи теоретико-вероятностным методом порядок расчетов следующий:

- 1. Расчет нормального размера замыкающего звена производить по формуле (38).
- 2. Определить координату середины полей допусков составляющих звеньев

$$Ec(A_j) = \frac{1}{2} \cdot [ES(A_j) + EI(A_j)]. \tag{44}$$

3. Определить координату середины поля допуска замыкающего звена

$$Ec(A_{\Delta}) = \sum_{j=1}^{n} Ec(A_j) y_B - \sum_{j=n+1}^{n+p} Ec(A_j) y_M.$$
 (45)

4. Определить допуск замыкающего звена

$$TA_{\Delta} = t_{\Delta} \sqrt{\sum_{j=1}^{m-1} \lambda_j^2 \cdot TA_j}.$$
 (46)

5. Определить предельные отклонения замыкающего звена

$$ES \, \blacktriangleleft_{\Delta} = Ec \, \blacktriangleleft_{\Delta} + \frac{TA_{\Delta}}{2}; \tag{47}$$

$$EI \, \blacktriangleleft_{\Delta} \supseteq Ec \, \blacktriangleleft_{\Delta} \supseteq \frac{TA_{\Delta}}{2}. \tag{48}$$

6. Определить предельные размеры замыкающего звена

$$A_{\Delta \max} = A_{\Delta} + ES \left(A_{\Delta} \right); \tag{49}$$

$$A_{\Delta \min} = A_{\Delta} + EI \langle A_{\Delta} \rangle \tag{50}$$

Пример

1. Прямая задача.

Для сборочной единицы (рис. 18) по заданным номинальным значениям составляющих звеньев цепи и параметрам замыкающего звена $A_1=130$ мм, $A_2=15$ мм, $A_3=15$ мм, $A_4=189$ мм, $A_5=90$ мм, $A_{\Delta}=1$, $TA_{\Delta}=0$,560 мм определить допуски составляющих звеньев.

Допуск замыкающего звена $TA_{\Delta} = 0,56$ мм = 560 мкм. Составить размерную цепь (рис. 19):

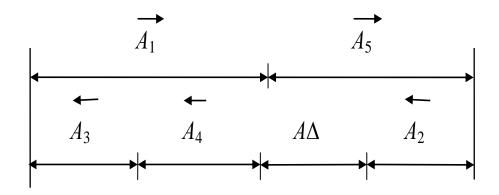


Рис. 19. Схема размерной цепи

1.1. Определить среднее число единиц допуска.

Выписать значения единиц допуска (прил. 13) для составляющих размеров размерной цепи (табл. 3).

Таблица 3 Значение единиц допуска для составляющих размеров

Размер	$A_1 = 130$	$A_2, A_3 = 15$	$A_4 = 189$	$A_5 = 90$
i, MKM	2,52	1,08	2,90	2,17

а) при решении методом максимума-минимума по формуле (34):

$$a_m = \frac{560}{2,52+1,08+1,08+2,90+2,17} = 57,4;$$

б) при решении теоретико-вероятностным методом по формуле (35) принимаем P=0.27 %, для которого $t_{\Delta}=3.00$; закон распределения составляющих звеньев — нормальный, в этом случае

$$a_m = \frac{560}{3\sqrt{\frac{1}{9}(2,52^2 + 1,08^2 + 1,08^2 + 2,90^2 + 2,17^2)}} = 119,9.$$

1.2. Выбрать квалитеты точности и допуски для составляющих размеров.

Найденное число единиц допуска находится между 9-м и 10-м квалитетами при решении методом максимума-минимума и между 11-м и 12-м квалитетами при решении теоретиковероятностным методом (прил. 14). Значения стандартных допусков и выбранных квалитетов для каждого метода приведены в табл. 4, 5.

Часть допусков назначается по более грубому квалитету, а часть – по более точному. Должны выполняться соотношения основных уравнений размерной цепи (36) и (37).

Таблица 4 Значения допусков составляющих звеньев размерной цепи при решении методом максимума-минимума

Звенья, мм	<i>IT</i> 9, мкм	<i>IT</i> 10, мкм	Квалитет	Размер, мм
$A_1 = 130$	100	160	<i>H</i> 10	$130^{+0,160}$
$A_2 = 15$	43	70	<i>h</i> 10	15 _{-0,070}
$A_3 = 15$	43	70	<i>h</i> 10	15 _{-0,070}
$A_4 = 189$	115	185	h9	189 _{-0,115}
$A_5 = 90$	87	140	<i>H</i> 10	90+0,140

Таблица 5 Значения допусков составляющих звеньев размерной цепи при решении теоретико-вероятностным методом

Звенья, мм	<i>IT</i> 11, мкм	<i>IT</i> 112, мкм	Квалитет	Размер, мм
$A_1 = 130$	250	400	<i>H</i> 11	$130^{+0,250}$
$A_2 = 15$	110	180	<i>h</i> 11	15 _{-0,110}
$A_3 = 15$	110	180	<i>h</i> 11	15 _{-0,110}
$A_4 = 189$	290	460	<i>h</i> 11	189 _{-0,290} 90 ^{+0,350}
$A_5 = 90$	220	350	<i>H</i> 12	$90^{+0,350}$

1.3. Проверить правильность назначенных допусков.

Сравнение с заданным допуском замыкающего размера показывает правильность решения задачи:

$$\sum_{j=1}^{m-1} TA_j = 160 + 70 + 70 + 115 + 140 = 555 < TA_{\Delta} = 560;$$

$$t_{\Delta} \sqrt{\sum_{j=1}^{m-1} \binom{2}{j} T A_{j}^{2}} = 3\sqrt{\frac{1}{9} \binom{4}{50^{2} + 110^{2} + 110^{2} + 290^{2} + 350^{2}} = 542 \le T A_{\Delta} = 560.$$

Из анализа табл. 4 и 5 видно, что применение теоретиковероятностного метода расчета размерных цепей позволяет значительно расширить допуски на составляющие звенья при

ничтожно малом риске выхода размеров замыкающего звена за допустимые пределы.

2. Обратная задача

Определить предельные значения и допуск замыкающего звена A_{Δ} (рис. 18) по заданным предельным размерам составляющих звеньев:

$$A_1 = 130H10$$
, $A_2 = 15h10$, $A_3 = 15h10$, $A_4 = 189H10$, $A_5 = 90H10$.

$$A_1 = 130^{+0.160}$$
, $A_2 = 15_{-0.170}$, $A_3 = 15_{-0.170}$, $A_4 = 189_{-0.115}$, $A_5 = 90^{+0.140}$.

Звенья A_1 и A_5 – увеличивающие, а звенья A_2 , A_3 и A_4 – уменьшающие.

Определить номинальный размер замыкающего звена по формуле (38):

$$A_{\Lambda} = (30+90-(5+189+15)=1)$$
 MM.

- 2.1. Решение задачи методом максимума-минимума
- 2.1.1. Определить предельные размеры замыкающего звена по формулам (39) и (40):

$$A_{\Delta \text{max}} = (30,160 + 90,140) - (4,930 + 188,885 + 14,930) = 1,555 \text{ mm},$$

$$A_{\Delta \text{min}} = (30,0+90,0) - (5+189,0+15) = 1,0 \text{ mm}.$$

2.1.2. Определить предельные отклонения замыкающего звена по формулам (41) и (42):

$$ES \blacktriangleleft_{\Delta} = 1,555 - 1 = 0,555 \text{ MM};$$

 $EI \blacktriangleleft_{\Delta} = 1 - 1 = 0 \text{ MM}.$

Таким образом, при решении задачи методом максимума-

минимума замыкающий размер при заданных номинальных размерах и предельных отклонениях составляющих размеров может быть выполнен с точностью $1^{+0,555}$.

2.1.3. Проверить правильность решения.

Правильность решения задачи можно проверить, определив по уравнению (43) допуск замыкающего звена:

$$TA_{\Lambda} = 0.160 + 0.070 + 0.070 + 0.115 + 0.140 = 0.555$$
 mm.

- 2.2. Решение задачи теоретико-вероятностным методом
- 2.2.1. Определить координаты середины полей допусков составляющих звеньев по формуле (44):

Ec
$$\P_1 = \frac{1}{2}$$
 $\P_1 = 0,080$ mm;
Ec $\P_2 = \frac{1}{2}$ $\P_2 = 0,070$ $= -0,035$ mm;
Ec $\P_3 = \frac{1}{2}$ $\P_3 = 0,070$ $= -0,035$ mm;
Ec $\P_4 = \frac{1}{2}$ $\P_4 = 0,115$ $= -0,0575$ mm;
Ec $\P_4 = \frac{1}{2}$ $= 0,140$ $= 0,070$ mm.

2.2.2. Определить координаты середины поля допуска замыкающего звена по формуле (45):

$$Ec \ (A_{\Delta}) = [0.080 + 0.070] - [-0.035] \cdot 2 + (-0.0575] = 0.2775 \text{ MM}.$$

2.2.3. Определить допуск замыкающего звена по формуле (46).

При $P=0.27~\%,\ t_{\Lambda}=3~$ и нормальном законе распределения

составляющих звеньев $\lambda_{i}^{2} = 1/9$:

$$TA_{\Delta} = 3\sqrt{\frac{1}{9}} \sqrt{160^2 + 0.070^2 + 0.070^2 + 0.115^2 + 0.140^2} = 0.261 \text{ mm}.$$

2.2.4. Определить предельные отклонения замыкающего звена по формулам (47) и (48):

$$ES(A_{\Delta}) = 0,2775 + \frac{0,261}{2} = 0,408 \text{ mm};$$

 $EI(A_{\Delta}) = 0,2775 - \frac{0,261}{2} = 0,147 \text{ mm}.$

2.2.5. Определить предельные размеры замыкающего звена по формулам (49) и (50):

$$A_{\Delta \max} = 1.0 + 0.408 = 1.408 \text{ mm};$$

 $A_{\Delta \min} = 1.0 + 0.147 = 1.147 \text{ mm}.$

Решение размерной цепи теоретико-вероятностным методом показывает, что (100-0.27)~%=99.73~% размеров замыкающих звеньев выполняются с точностью $1^{+0.408}_{+0.147}$ мм.

ЗАДАНИЕ № 7 НОРМИРОВАНИЕ ЭЛЕМЕНТОВ ШЛИЦЕВОГО СОПРЯЖЕНИЯ

Для заданного шлицевого сопряжения:

- по заданному виду центрирования выбрать поля допусков по d, D, b;
- построить допуски и предельные размеры всех элементов сопряжения;
- изобразить шлицевое сопряжение в сборе, отдельно вал и втулку; произвести простановку размеров с предельными отклонениями и условными обозначениями посадок.

Исходные данные:

По последней цифре номера варианта

Nº	0	1	2	3	4	5	6	7	8	9
Размеры шлицевого соединения $z \times d \times D$	6×28×34	8×36×42	8×52×60	10×82×88	6×16×20	8×42×48	6×18×22	8×46×50	10×28×35	16×56×65
Ширина b , мм	7	7	10	12	4	8	5	9	4	5
Характер соединения	подвижное									

По предпоследней цифре номера варианта

No	0	1	2	3	4	5	6	7	8	9
Вид центрирования	d	b	D	d	b	D	d	b	D	d

Методические указания к заданию № 7

Посадки шлицевых соединений с прямобочным профилем зубьев определяются их назначением и принятой системой центрирования втулки относительно вала. Существует три способа центрирования: по внутреннему диаметру d, по наружному диаметру D, по боковым сторонам зубьев b.

Посадки назначают в зависимости от способа центрирования. Поскольку поверхности шлицевого соединения либо обеспечивают точность центрирования, либо не выполняют этой функции, то возникает необходимость отдельного нормирования точности каждой поверхности, когда она является центрирующей и когда она не является центрирующей.

Для центрирующих поверхностей посадки выбираются по табл. 15.1–15.3 прил. 15, в зависимости от способа центрирования.

Для нецентрирующих поверхностей посадки выбираются по табл. 15.4 прил. 15.

Предельные отклонения определяются по ГОСТ 25347-82 (см. прил. 2).

Построить схемы расположения полей допусков каждого из параметров шлицевого соединения.

Пример:

Для подвижного шлицевого сопряжения $6\times28\times34$ с видом центрирования — d выполнить действия, предусмотренные условиями задания № 7.

1. Выбрать поля допусков для параметров шлицевого сопряжения.

Выбираем поля допусков по ГОСТ 1139—80 (прил. 15): для размера d-H7/e8 (табл. 14.1); [7, с. 7, табл. 1] для размера b-F8/f7 (табл. 14.1); [7, с. 7, табл. 1] для размера D-H12/a11 (табл. 14.4). [7, с. 5, табл. 6]

Выбранное шлицевое соединение имеет следующее

обозначение:

$$d-6\times28\frac{H7}{e8}\times34\frac{H12}{a11}\times7\frac{F8}{f7}$$
.

2. Построить схемы расположения полей допусков для каждого из параметров сопряжения.

По ГОСТ 25347-82 (прил. 2) определить предельные отклонения размеров:

отверстие
$$28H7 = 28^{+0,021}$$
; отверстие $34H12 = 34^{+0,250}$; вал $28e8 = 28^{-0,040}_{-0,073}$; вал $34a11 = 34^{-0,310}_{-0,470}$;

ширина впадин отверстия $7F8 = 7^{+0,035}_{+0,013}$;

толщина зубьев вала $7f7 = 7^{-0.013}_{-0.028}$.

Схемы расположения полей допусков приведены на рис. 20.

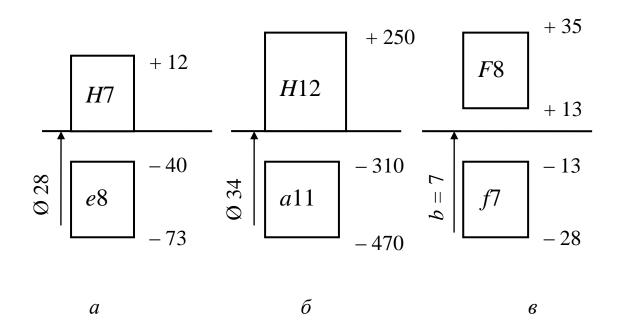


Рис. 20. Схемы расположения полей допусков параметров шлицевого соединения: a — внутренний диаметр; δ — наружный диаметр; ϵ — ширина зубьев

3. Определить предельные размеры и допуски всех элементов сопряжения.

Размер отверстия Наибольший предельный размер Наименьший предельный размер Допуск на размер <i>TD</i>	Ø28 <i>H</i> 7 28,021 мм 28,0 мм 0,021 мм
Размер отверстия Наибольший предельный размер Наименьший предельный размер Допуск на размер <i>TD</i>	Ø34 <i>H</i> 12 34,250 мм 34,0 мм 0,250 мм
Размер вала Наибольший предельный размер Наименьший предельный размер Допуск на размер <i>Td</i>	Ø28e8 27,960 mm 27,927 mm 0,033 mm
Размер вала Наибольший предельный размер Наименьший предельный размер Допуск на размер <i>Td</i>	Ø34 <i>a</i> 11 33,690 мм 33,530 мм 0,160 мм
Размер ширины впадины отверстия Наибольший предельный размер Наименьший предельный размер Допуск на размер <i>TD</i>	7 <i>F</i> 8 7,035 mm 7,013 mm 0,022 mm
Размер толщины зубьев вала Наибольший предельный размер Наименьший предельный размер Допуск на размер Td	7 <i>f</i> 7 6,987 mm 6,972 mm 0,015 mm

4. Нанести на эскизы обозначения размеров шлицевого соединения (рис. 21, 22).

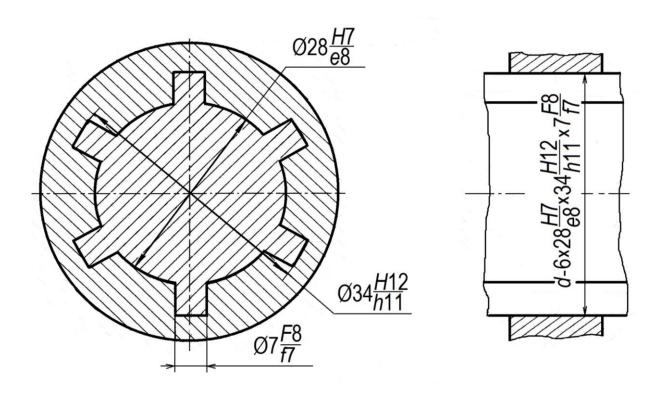
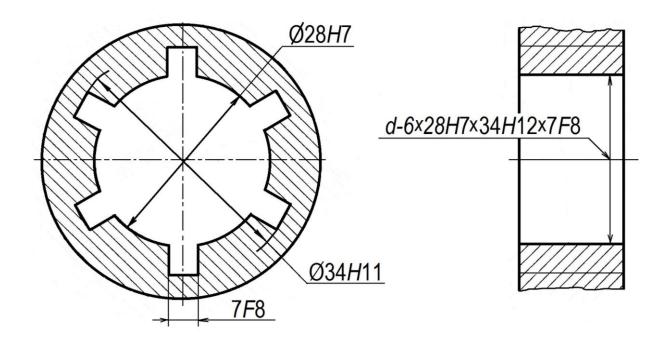
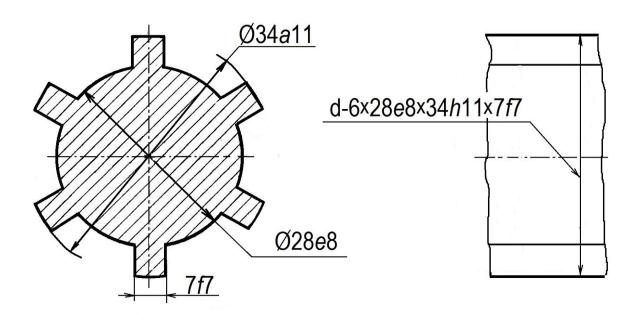




Рис. 21. Шлицевое соединение с прямобочным профилем

a

б

Рис. 22. Детали шлицевого соединения с прямобочным профилем: a – втулка; δ – вал

ЗАДАНИЕ № 8 НОРМИРОВАНИЕ ЭЛЕМЕНТОВ ШПОНОЧНОГО СОПРЯЖЕНИЯ

По заданному диаметру вала и длине ступицы:

- выбрать конструкцию элементов шпоночного сопряжения;
- по виду соединения назначить поля допусков по всем параметрам шпоночного сопряжения;
- построить схемы расположения полей допусков всех элементов шпоночного сопряжения с указанием предельных отклонений;
 - рассчитать предельные размеры каждого параметра;
- изобразить соединение в сборе и отдельно вал и втулку с простановкой полей допусков.

Исходные данные:

По последней цифре номера варианта

№	0	1	2	3	4	5	6	7	8	9
l, MM	50	60	100	110	110	120	140	150	160	170
d, MM	38	67	60	71	75	90	110	100	95	105

По предпоследней цифре номера варианта

No	0	1	2	3	4	5	6	7	8	9
Вид соединения с деталью	Свободный	Нормальный	Плотный	Свободный	Нормальный	Плотный	Свободный	Нормальный	Плотный	Свободный

Методические указания к заданию № 8

Размеры, допуски и посадки большинства типов шпонок и

пазов для них унифицированы. Для получения различных посадок призматических шпонок установлены поля допусков на ширину b шпонок, пазов валов и втулок.

Размеры элементов шпоночного соединения (ширинахвысота) выбираются по прил. 16, в зависимости от диаметра вала. Длина шпонки выбирается в зависимости от длины ступицы вала l (на 5–10 мм меньше длины ступицы колеса, а затем выбирается ближайшее стандартное значение).

Длины шпонок должны выбираться из ряда (ГОСТ 23360–78): 6; 8; 10; 12; 14; 16; 18; 20; 22; 25; 28; 32; 36; 40; 45; 50; 56; 63; 70; 80; 90; 100; 110; 125; 140; 160; 180; 200; 220; 250; 280; 320; 360; 400; 450; 500 мм. Глубина пазов под шпонку и отклонения определяются согласно прил. 16.

Для ширины шпонки b назначается поле допуска h9. Для высоты h-h9 (для шпонки высотой от 2 до 6 мм), h11 (для шпонки высотой свыше 6 мм), для длины $l_{\rm mn}-h14$.

Поля допусков для пазов вала и втулки задаются в зависимости от вида соединения. Выделено три вида соединения – свободное, нормальное, плотное. Поля допусков и предельные отклонения определяются по прил. 16, допуски для размеров $(d-t_1)$ и $(d+t_2)$ – по прил. 17.

Пример:

Дано: шпонка призматическая, производство серийное, вид сопряжения — нормальный. Диаметр вала d=36 мм. Длина ступицы вала l=80 мм. Выполнить действия, предусмотренные условиями задания $N \ge 8$.

1. Выбрать конструкцию элементов шпоночного сопряжения.

Согласно исходным данным номинальные значения элементов шпоночного сопряжения по ГОСТ 23360–78 (см. прил. 16) следующие:

b=10 мм; h=8 мм; $t_1=5$ мм; $t_2=3,3$ мм; [14, с. 4, табл. 2] Длина шпонки $l_{\text{шп}}=70$ мм. [14, с. 3, п. 3]

2. Назначить посадки и определить предельные отклонения для всех параметров шпоночного сопряжения.

Предельные отклонения размеров шпоночного сопряжения: высота шпонки — 8h11 ($8_{-0,090}$); ширина шпонки — 10h9 ($10_{-0,038}$); длина шпонки — 70h14 ($70_{-0,740}$); ширина паза втулки — 10Js9 ($10\pm0,018$); длина паза вала под подшипник — 70H15 ($70^{+1,200}$); ширина паза вала — 10N9 ($10_{-0,036}$); глубина паза втулки — $3,3^{+0,200}$; глубина паза вала — $5^{+0,200}$; ($d-t_1$) = $31_{-0,2}$ мм; ($d+t_2$) = $39,3^{+0,2}$ мм.

3. Построить схемы расположения полей допусков всех параметров шпоночного соединения (приведены на рис. 23, 24, 25, 26).

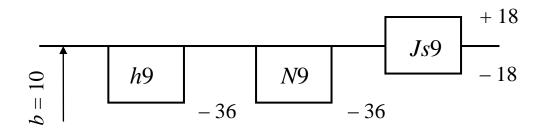


Рис. 23. Схема расположения полей допусков по ширине шпонки

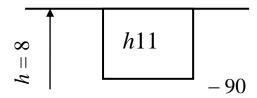


Рис. 24. Схема расположения полей допусков по высоте шпонки

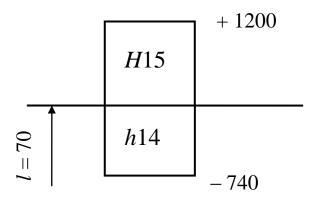


Рис. 25. Схема расположения полей допусков по длине шпонки

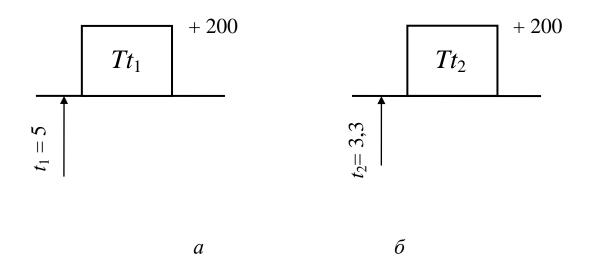


Рис. 26. Схема расположения полей допусков по глубине пазов: a — паз вала; δ — паз втулки

4. Рассчитать предельные размеры и допуски каждого параметра сопряжения.

Ширина шпонки	10h9
Наибольший предельный размер	10 мм
Наименьший предельный размер	9,964 мм
Допуск на размер Td	0,036 мм

Ширина паза вала	10 <i>N</i> 9
Наибольший предельный размер	10 мм
Наименьший предельный размер	9,964 мм
Допуск на размер <i>TD</i>	0,036 мм
	,
Ширина паза втулки	$10J_{s}9$
Наибольший предельный размер	10,018 mm
Наименьший предельный размер	9,982 мм
Допуск на размер <i>TD</i>	0,036 мм
Высота шпонки	8 <i>h</i> 11
Наибольший предельный размер	8 mm
Наименьший предельный размер	7,910 mm
Допуск на размер Td	0,090 mm
Длина шпонки	70h14
Наибольший предельный размер	70 mm
Наименьший предельный размер	69,260 мм
Допуск на размер <i>Td</i>	0,740 MM
Длина паза вала под шпонку	70 <i>H</i> 15
Наибольший предельный размер	$70,\!200 \text{мм}$
Наименьший предельный размер	71 мм
Допуск на размер <i>TD</i>	1,200 мм
Глубина паза вала под шпонку	$5^{+0,200}$
Наибольший предельный размер	5,200 мм
Наименьший предельный размер	5 mm
Допуск на размер <i>Td</i>	$0,\!200~{ m mm}$
Глубина паза втулки под шпонку	$3,3^{+0,200}$
Наибольший предельный размер	3,500 мм
Наименьший предельный размер	3,300 мм
Допуск на размер <i>Td</i>	0,200 мм

5. Нанести на эскиз обозначение параметров шпоночного сопряжения.

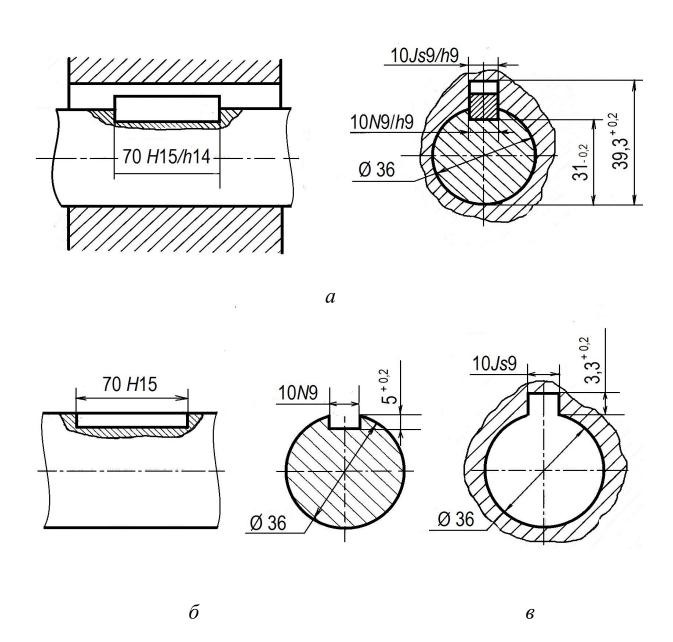


Рис. 27. Шпоночное соединение с призматической шпонкой: a — сборочный чертеж; δ — вал; ϵ — втулка

Приложение 1 Замена посадок по системе ОСТ ближайшими посадками по ЕСДП при размерах от 1 до 500 мм

Система отверстий			Система вала		
		Номинальные			Номинальные
Посадка	Заменяющая	размеры, для	Посадка	Заменяющая	размеры, для
системы	посадка	которых	системы	посадка	которых
OCT	по ГОСТ 25347–86	рекомендуется	OCT	по ГОСТ 25347–86	рекомендуется
		замена, мм			замена, мм
$A_1/\Pi p 2_1$	H6/s5	От 1 до 500	_	_	_
$A_1/\Pi p1_1$	H6/r5	ОТТДО 500			
A_1/Γ_1	H6/p5	От 1 до 3 От 1 до 500	Γ_1/B_1	N6/h5	
	H6/n5				
A_1/T_1	H6/n5	От 1 до 3 От 1 до 500	T_1/B_1	M6/h5	
	H6/m5				
A_1/H_1	H6/k5		H_1/B_1	K6/h5	
A_1/Π_1	H6/j _s 5		Π_1/B_1	$J_s6/h5$	От 1 до 500
A_1/C_1	H6/h5	От 1 до 500	C_1/B_1	H6/h5	
A_1/\mathcal{I}_1	H6/g5		\mathcal{L}_1/B_1	G6/h5	
A_1/X_1	H6/f6		X_1/B_1	F7/h5	
А/Гр	<i>H</i> 7/ <i>u</i> 7	От 1 до 500	Γ_D/D	U8/h6	От 1 до 500
	<i>H</i> 7/ <i>t</i> 6	Св. 24 до 500	Гр/В	T7/h6	Св. 24 до 500
А/Пр	H7/r7	От 1 до 120	Пр/В	<i>R</i> 7/ <i>h</i> 6	От 1 до 150
	H7/s6	Св. 24 до 500		S7/h6	Св. 24 до 500
A/Π_A	<i>H</i> 7/ <i>p</i> 6	От 1 до 120	_		_
	H7/r6	От 1 до 3 Св. 80 до 500			
A/Γ	<i>H</i> 7/ <i>p</i> 6	От 1 до 3	Γ/B	M7/h6	От 1 до 3
	H7/n6	Св. 1 до 500		N7/h6	Св. 1 до 500
A/T	<i>H</i> 7/ <i>n</i> 6	От 1 до 3	/E/P	K7/h6	От 1 до 3
	<i>H</i> 7/ <i>m</i> 6	Св. 1 до 500	T/B	<i>M</i> 7/ <i>h</i> 6	Св. 1 до 500
A/H	H7/k6	От 1 до 500	H/B	$J_s7/h6$	От 1 до 3
				K7/h6	Св. 1 до 500

Продолжение прил. 1

	<u> </u>		Продолжение прил. 1					
(Система отверст	гий		Система вал	ıa			
Посадка системы ОСТ	Заменяющая посадка по ГОСТ 25347–86	Номинальные размеры, для которых рекомендуется замена, мм	Посадка системы ОСТ	Заменяющая посадка по ГОСТ 25347–86	Номинальные размеры, для которых рекомендуется замена, мм			
А/П	H7/j _s 6	,	П/В	$J_s7/h6$,			
A/C	H7/h6		C/B	H7/h6				
А/Д	<i>H</i> 7/g6		Д/В	G7/h6	O= 1 = 2 500			
A/X	H7/f6		X/B	F8/h6	От 1 до 500			
71/71	,		21/15	F7/h6				
A/\mathcal{J}	H7/e8 H7/e7		Л/В	E8/h6				
A/III	H7/d8		III/B	D8/h6				
A/TX	H7/c8	- 1	_	_	_			
$A_{2a}/\Pi p2_{2a}$	Н8/и8	От 1 до 500	$\Pi p2_{2a}/B_{2a}$	U8/h7	От 1 до 500			
$A_{2a}/\Pi p1_{2a}$	H8/s7		_	_	_			
A_{2a}/Γ_{2a}	H8/n7		Γ_{2a}/B_{2a}	N8/h7				
$A_{2a}T_{2a}$	H8/m7		T_{2a}/B_{2a}	M8/h7				
A_{2a}/H_{2a}	H8/k7		H_{2a}/B_{2a}	K8/h7	От 1 до 500			
A_{2a}/Π_{2a}	$H8/j_s7$		Π_{2a}/B_{2a}	$J_s8/h7$				
A_{2a}/C_{2a}	H8/h7		C_{2a}/B_{2a}	H8/h7				
A_{2a}/X_{2a}	H8/f8		_	_	_			
$A_3/\Pi p3_3$	H8/x8	От 18 до 100 От 50 до 500 От 225 до 500			_			
$A_3/\Pi p2_3$	H8/z8 H8/x8 H8/u8	Св. 6 до 30 Св. 6 до 50 Св. 30 до 500	_	_	-			

Окончание прил. 1

	Система отверст		Система вала					
	Система отверст	Номинальные		Система вал	Номинальные			
Посолис	201/01/9101/109		Подолис	Заменяющая				
Посадка системы	Заменяющая посадка	размеры, для	Посадка системы		размеры, для			
	по ГОСТ 25347–86	которых	ОСТ	посадка по ГОСТ 25347–86	которых			
001	110100123347-60	замена, мм	001	10100123347-00	замена, мм			
	H8/x8	Св. 3 до 30			Sawena, ww			
4 /Π ₁₀ 1								
$A_3/\Pi p1_3$	H8/u8	Св. 3 до 100	_	_	_			
	H8/s7	Св. 65 до 500		XXO /I O				
	H8/h8			H8/h8				
A_3/C_3	H9/h8		C_3/B_3	H9/h8				
113/ 03	H8/h9		C_3/D_3	H8/h9				
	H9/h9			H9/h9				
	H9/f8			F9/h8				
	H8/f9			F8/h9				
A_3/X_3	H9/f9		X_3/B_3	F9/h9				
3,3	H9/e8		3, 3	E9/h8				
	H8/e9	0 1 500		E8/h9	От 1 до 500			
	H9/d9	От 1 до 500		D9/h9				
A_3/III_3	H8/d9		III_3/B_3	D9/h8				
	H9/d10		$\mathbf{m}_{3}/\mathbf{D}_{3}$	D10/h8				
	119/410			D10/118				
$A_{3a}/\Pi p1_3$	H10/h10		C_{3a}/B_{3a}	H10/h10				
A_3/C_{3a}	H11/h11		C_4/B_4	H11/h11				
A_4/X_4	H11/d11		X_4/B_4	D11/h11				
A /TT	H11/b11	От 1 до 500	II /D	B11/h11	От 1 до 500			
A_4/JI_4	H11/c11	От 1 до 18 Св. 160 до 500	$ \Pi_4/B_4 $	C11/h11	От 1 до 18 Св. 160 до 500			
A_4/III_4	H11/a11	От 1 до 500	III /D	A11/h11	От 1 до 500			
	H11/b11	От 1 до 18 Св. 200 до 500	III_4/B_4	B11/h11	От 1 до 18 Св. 200 до 500			
A_5/C_5	H12/h12	От 1 то 500	C_5/B_5	H12/h12	От 1 то 500			
A_5/X_5	H12/b12	От 1 до 500	X_5/B_5	B12/h12	От 1 до 500			

Приложение 2

Выписка из ГОСТ 25347-82

Таблица 2.1 Предельные отклонения валов от 1 до 500 мм

	Предельные отклонения валов от 1 до 500 мм										
Интервал		Поля до	пусков	4-го	и 5	-го н	свалите	тов			
размеров,	<i>g</i> 4	<i>h</i> 4	j_s 4	<i>k</i> 4	· //	n4	<i>n</i> 4	<i>g</i> 5	<i>h</i> 5		
MM	Ве	ерхние (е	s) и ни	жние	e (ei)	отк.	понени	я, мкм			
От 1 до 3	-2	0	+1,5	+3	; -	+5	+7	-2	0		
ОТТДОЗ	-5	-3	-1,5	0	-	+2	+4	-6	-4		
Съ 2 го 6	-4	0	+2	+5	-	+8	+12	-4	0		
Св. 3 до 6	-8	-4	-2	+1	-	+4	+8	-9	-5		
Св. 6 до 10	- 5	0	+2	+5	+	10	+14	-5	0		
Св. 0 до 10	– 9	-4	-2	+1	-	+6	+10	-11	-6		
Св. 10 до 18	-6	0	+2,5	+6	j +	-12	+17	-6	0		
Св. 10 до 18	-11	-5	-2,5	+1	-	+7	+12	-14	-8		
Св. 18 до 30	– 7	0	+3	+8	+	14	+21	-7	0		
Св. 16 до 30	-13	-6	-3	+2	, -	+8	+15	-16	- 9		
Св. 30 до 50	-9	0	+3,5	+9) +	16	+24	-9	0		
Св. 30 до 30	-16	-7	-3,5	+2	, -	+9	+17	-20	-11		
Св. 50 до 80	-10	0	+4	+10	+ C	19	+28	-10	0		
Св. 50 до 80	-18	-8	-4	+2	. +	11	+20	-23	-13		
Св. 80	-12	0	+5	+13	3 +	-23	+33	-12	0		
до 120	-22	-10	-5	+3	+	-13	-23	-27	-15		
Св. 120	-14	0	+6	+15	5 +	27	+39	-14	0		
до 180	-26	-12	-6	+3	+	15	+27	-32	-18		
Св. 180	-15	0	+7	+18	8 +	-31	+45	-15	0		
до 250	-29	-14	– 7	+4	. +	17	+31	-35	-20		
Св. 250	-17	0	+8	+20	+ C	36	+50	-17	0		
до 315	-33	-16	-8	+4	. +	20	+34	-40	-23		
Св. 315	-18	0	+9	+22	2 +	39	+55	-18	0		
до 400	-36	-18	-9	+4	. +	-21	+37	-43	-25		
Св.400	-20	0	+10	+25	5 +	43	+60	-20	0		
до 500	-40	-20	-10	+5	+	-23	+40	-47	-27		
Интервал		Поля д	опуско	в вал	тов 5	-го і	квалите	ета			
размеров,	j_s 5	<i>k</i> 5	·	<i>1</i> 5	<i>n</i> 5		<i>p</i> 5	<i>r</i> 5	<i>s</i> 5		
MM	Ве	ерхние (е	s) и ни	жние	e (ei)	отк.	понени	я, мкм			
Om 1 == 2	+2	+4	+6	5	+8		+10	+14	+18		
От 1 до 3	-2	0			+4	1	+6	+10	+14		
Cn 2 - a (+25 +6 +6)	+13			+20	+24			
Св. 3 до 6	-2,5	+1	+4	1	+8		+12	+15	+19		
Cn 6 72 10	+3	+7	+1	2	+16		+21	+25	+29		
Св. 6 до 10	-3	+1	+6	5	+10			+19	+23		

Продолжение прил. 2 Продолжение табл. 2.1

					продс	лжение	таол. 2.1
Св. 10 до 18	+4	+9	+15	+20	+26	+31	+36
СВ. 10 ДО 10	-4	+1	+7	+12	+18	+23	+28
Св. 18 до 30	+4,5	+11	+17	+24	+31	+37	+44
	-4,5	+2	+8	+15	+22	+28	+35
Св. 30 до 50	+5,5	+13	+20	+28	+37	+45	+54
	-5,5	+2	+9	+17	+26	+34	+43
Св. 50 до 65						+54	+66
	+6,5	+15	+24	+33	+45	+41	+53
Св. 65 до 80	-6,5	+2	+11	+20	+32	+56	+72
						+43	+59
Св. 80						+66	+86
до 100	+7,5	+18	+28	+38	+52	+51	+71
Св. 100	-7,5	+3	+13	+23	+37	+69	+94
до 120						+54	+79
Св. 120						+81	+110
до 140						+63	+92
Св. 140	+9	+21	+33	+45	+61	+83	+118
до 160	-9	+3	+15	+27	+43	+65	+100
Св. 160						+86	+126
до 180						+68	+108
Св. 180						+97	+142
до 200						+77	+122
Св. 200	+10	+24	+37	+51	+70	+100	+150
до 225	-10	+4	+17	+31	+50	+80	+130
Св. 225						+104	+160
до 250						+84	+140
Св. 250						+117	+181
до 280	+11,5	+27	+43	+57	+79	+94	+158
Св. 280	-11,5	+4	+20	+34	+56	+121	+193
до 315						+98	+170
Св. 315						+133	+215
до 355	+12,5	+29	+46	+62	+87	+108	+190
Св. 355	-12,5	+4	+21	+37	+62	+139	+233
до 400						+114	+208
Св. 400						+153	+259
до 450	+13,5	+32	+50	+67	+95	+126	+232
Св. 450	-13,5	+5	+23	+40	+68	+159	+279
до 500						+132	+252

Продолжение прил. 2 Продолжение табл. 2.1

Интервал		Попя	лопуск	ов валої				Tao.1. 2.1
размеров,	<i>f</i> 6	<i>g</i> 6	h6	$j_s 6$	k6	<i>m</i> 6	n6	<i>p</i> 6
MM	J	Верхние (l .	l .	· · ·
0 1 2	-6	-2	0	+3	+6	+8	+10	+12
От 1 до 3	-12	-8	-6	-3	0	+2	+4	+6
C- 2 (-10	-4	0	+4	+9	+12	+16	+20
Св. 3 до 6	-18	-12	-8	-4	+1	+4	+8	+12
Cz. 6 za 10	-13	-5	0	+4,5	+10	+15	+19	+24
Св. 6 до 10	-22	-14	-9	-4,5	+1	+6	+10	+15
Съ. 10 до 19	-16	-6	0	+5,5	+12	+18	+23	+29
Св. 10 до 18	-27	-17	-11	-5,5	+1	+7	+12	+18
Съ 18 до 20	-20	- 7	0	+6,5	+15	+21	+28	+35
Св. 18 до 30	-33	-20	-13	-6,5	+2	+8	+15	+22
Св. 30 до 50	-25	- 9	0	+8	+18	+25	+33	+42
Св. 30 до 30	-41	-25	-16	-8	+2	+9	+17	+26
Св. 50 до 80	-30	-10	0	+9,5	+21	+30	+39	+51
Св. 30 до 80	-49	-29	-19	-9,5	+2	+11	+20	+32
Св. 80	-36	-2	0	+11	+25	+35	+45	+59
до 120	-58	-34	-22	-11	+3	+13	+23	+37
Св. 120	-43	-14	0	+12,5	+28	+40	+52	+68
до 180	-68	-39	-25	-12,5	+3	+15	+27	+43
Св. 180	-50	-15	0	+14,5	+33	+46	+60	+79
до 250	-79	-4	-29	-14,5	+4	+17	+31	+50
Св. 250	-56	-17	0	+16	+36	+52	+66	+88
до 315	-88	-49	-32	-16	+4	+20	+34	+56
Св. 315	-62	-18	0	+18	+40	+57	+73	+98
до 400	-98	-54	-36	-18	+4	+21	+37	+62
Св. 400	-68	-20	0	+20	+45	+63	+80	+108
до 500	-108	-60	-40	-20	+5	+23	+40	+68
Интервал		Поля доп	усков в	алов 6-і	о и 7-г		итетов	
размеров,	<i>r</i> 6	s6	<i>t</i> 6	<i>e</i> 7	<i>f</i> 7	<i>h</i> 7	j_s 7	<i>k</i> 7
MM		Верхние ((es) и н	ижние (<i>еі</i>) откл	онения	я, мкм	
От 1 до 3	+16	+20	_	-14	-6	0	+5	+10
ОТТДОЗ	+10	+14		-24	-16	-10	-5	0
Св. 3 до 6	+23	+27	_	-20	-10	0	+6	+13
СВ. 5 ДО О	+15	+19		-32	-22	-12	-6	+1
Св. 6 до 10	+28	+32	_	-25	-13	0	+7	+16
Св. 6 до 10	+19	+23		-40	-28	-15	– 7	+1

Продолжение прил. 2

	Продолжение табл. 2									
C- 10 10	+34	+39		-32	-16	0	+9	+19		
Св. 10 до 18	+23	+28	_	-50	-34	-18	-9	+1		
Св. 18 до 24	+41	+48	_	-40	20	0	+10	122		
C- 24 20			+54		-20			+23		
Св. 24 до 30	+28	+35	+41	-61	-4 1	-21	-10	+2		
C- 20 40			+64							
Св. 30 до 40	+50	+59	+48	-50	-25	0	+12	+27		
C 40 50	+34	+43	+70	-75	-50	-25	-12	+2		
Св. 40 до 50			+54							
C 50 65	+60	+72	+85							
Св. 50 до 65	+41	+53	+65	-60	-30	0	+15	+32		
C 65 00	+62	+78	+94	-9 0	-60	-30	-15	+2		
Св. 65 до 80	+43	+59	+75							
Св. 80	+73	+93	+113							
до 100	+51	+71	+91	-7 2	-36	0	+17	+38		
Св. 100	+76	+101	+126	-107	-71	-35	-17	+3		
до 120	+54	+79	+104							
Св. 120	+88	+117	+147							
до 140	+63	+92	+122							
Св. 140	+90	+125	+159	-85	-43	0	+20	+43		
до 160	+65	+100	+134	-125	-83	-40	-20	+3		
Св. 160	+93	+133	+171							
до 180	+68	+108	+146							
Св. 180	+106	+151	+195							
до 200	+77	+122	+166							
Св. 200	+109	+159	+209	-100	-50	0	+23	+50		
до 225	+80	+130	+180	-146	-96	-46	-23	+4		
Св. 225	+113	+169	+225							
до 250	+84	+140	+196							
Св. 250	+126	+190	+250							
до 280	+94	+158	+218	-110	-56	0	+26	+56		
Св. 280	+130	+202	+272	-162	-108	-52	-26	+4		
до 315	+98	+170	+240							
Св. 315	+144	+226	+304							
до 355	+108	+190	+268	-125	-62	0	+28	+61		
Св. 355	+150	+244	+330	-182	-119	-57	-28	+4		
до 400	+114	+208	+294							
Св. 400	+166	+272	+370							
до 450	+126	+232	+330	-135	-68	0	+31	+68		
Св. 450	+172	+292	+400	-198	-131	-63	-31	+5		
до 500	+132	+252	+360							

Продолжение прил. 2 Продолжение табл. 2.1

T.T	Поля допусков валов 7-го и 8-го квалитетов										
Интервал			Ĭ		I			M			
размеров,	<i>m</i> 7	<u>n7</u>	$\frac{s7}{s}$	<u>u7</u>	<u>c8</u>	<i>d</i> 8	<i>e</i> 8	<i>f</i> 8			
MM		Верхние	\		<i>ei</i>) откј						
От 1 до 3	_	+14	+24	+28	-60	-20	-14	-6			
3337		+4	+14	+18	<u>-74</u>	-34	-28	-20			
Св. 3 до 6	+16	+20	+31	+35	-70	-30	-20	-10			
одго до с	+4	+8	+19	+23	-88	-48	-38	-28			
Св. 6 до 10	+21	+25	+38	+43	-80	-40	-25	-13			
ев. е де те	+6	+10	+23	+28	-102	-62	-47	-35			
Св. 10 до 18	+25	+30	+46	+51	-95	-50	-32	-16			
СВ. ТО ДО ТО	+7	+12	+28	+33	-122	-77	-59	-43			
Св. 18 до 24				+62							
СВ. 10 ДО 24	+29	+36	+56	+41	-110	-65	-40	-20			
Св. 24 до 30	+8	+15	+35	+69	-143	-98	-73	-53			
Св. 24 до 30				+48							
Св. 30 до 40				+85	-120						
Св. 30 до 40	+34	+42	+68	+60	-159	-80	-50	-25			
Св. 40 до 50	+9	+17	+43	+95	-130	-119	-89	-64			
Св. 40 до 30				+70	-169						
Съ 50 но 65			+83	+117	-140						
Св. 50 до 65	+41	+50	+53	+87	-186	-100	-60	-30			
Cp. 65 TO 90	+11	+20	+89	+132	-150	-146	-106	-76			
Св. 65 до 80			+59	+102	-196						
Св. 80			+106	+159	-170						
до 100	+48	+58	+71	+124	-224	-120	-72	-36			
Св. 100	+13	+23	+114	+179	-180	-174	-126	-90			
до 120			+79	+144	-234						
Св. 120			+132	+210	-200						
до 140			+92	+170	-263						
Св. 140	+55	+67	+140	+230	-210	-145	-85	-43			
до 160	+15	+27	+100	+190	-273	-208	-148	-106			
Св. 160			+148	+250	-230						
до 180			+108	+210	-293						
Св. 180			+168	+282	-240						
до 200			+122	+236	-312						
Св. 200	+63	+77	+176	+304	-260	-170	-100	-50			
до 225	+17	+31	+130	+258	-332	-242	-172	-122			
Св. 225			+186	+330	-280	1					
до 250			+140	+284	-352						
до 250			1170	1201	334						

						продол	жение	Taon. 2.1
Св. 250			+210	+367	-300			
до 280	+72	+86	+158	+315	-381	-190	-110	-56
Св. 280	+20	+34	+222	+402	-330	-271	-191	-137
до 315			+170	+350	-411			
Св. 315			+247	+447	-360			
до 355	+78	+94	+190	+390	-449	-210	-125	-62
Св. 355	+21	+37	+265	+492	-400	-299	-214	-151
до 400			+208	+435	-489			
Св. 400			+295	+553	-440			
до 450	+86	+103	+232	+490	-537	-230	-135	-68
Св. 450	+23	+40	+315	+603	-480	-327	-232	-165
до 500			+252	+540	-577			
Интервал		Поля доп	усков в	алов 8-і	го и 9-г	о квали	итетов	
размеров,	h8	u8	<i>x</i> 8	<i>z</i> 8	<i>d</i> 9	<i>e</i> 9	<i>f</i> 9	h9
MM		Верхние	(es) и н		ei) откл	онени		l
	0	+32	+34	+40	-20	-14	_6	0
От 1 до 3	-14	+18	+20	+26	-45	-39	-31	-25
	0	+41	+46	+53	-30	-20	-10	0
Св. 3 до 6	-18	+23	+28	+35	-60	-50	-40	-30
G (10	0	+50	+56	+64	-40	-25	-13	0
Св. 6 до 10	-22	+28	+34	+42	-76	-61	-49	-36
			+67	+77	, ,		1,2	
Св. 10 до 14	0	+60	+40	+50	-50	-32	-16	0
	-27	+33	+72	+87	_ 93	−75	-59	-43
Св. 14 до 18			+45	+60				
		+74	+87	+106				
Св. 18 до 24	0	+41	+54	+73	-65	-40	-20	0
	-33	+81	+97	+121	-117	-92	_ 72	-52
Св. 24 до 30		+48	+64	+88				
G 10 10		+99	+119	+151				
Св. 30 до 40	0	+60	+80	+112	-80	-50	-25	0
~ 10 - 0	-39	+109	+136	+175	-142	-112	-87	-62
Св. 40 до 50		+70	+97	+136				
		+133	+168	+218				
Св. 50 до 65	0	+87	+122	+172	-100	-60	-30	0
	-4 6	+148	+192	+256	-174	-134	-104	_ 7 4
Св. 65 до 80	- 2	+102	+146	+210] -, .			
Св. 80		+178	+232	+312				
до 100	0	+124	+178	+258	-120	-72	-36	0
Св. 100	_54	+198	+264	+364	-207	-159	-123	_ 8 7
до 120	- ·	+144	+210	+310	,			
					1			1

						продол	жение	таол. 2.1
Св. 120		+233	+311	+428				
до 140		+170	+248	+365				_
Св. 140	0	+253	+343	+478	-145	-85	-43	0
до 160	-63	+190	+280	+415	-245	-185	-143	-100
CB. 160		+273	+373	+528				
до 180		+210	+310	+465				
Св. 180		+308	+422	+592				
до 200	0	+236	+350	+520	170	100	70	0
Св. 200	0	+330	+457	+647	-170	-100	-50	0
до 225	-72	+258	+385	+575	-285	-215	-165	-115
Св. 225		+356	+497	+712				
до 250		+284	+425	+640				
Св. 250		+396	+556	+791				
до 280	0	+315	+475	+710	-190	-110	-56	0
Св. 280	-81	+431	+606	+871	-320	-240	-186	-130
до 315		+350	+525	+790				
Св. 315		+479	+679	+989				
до 355	0	+390	+590	+900	-210	-125	-62	0
Св. 355	-89	+524	+749	+1089	-350	-265	-202	-140
до 400		+435	+660	+1000				
Св. 400		+587	+837	+1197				
до 450	0	+490	+740	+1100	-230	-135	-68	0
Св. 450	-97	+637	+917	+1347	-385	-290	-223	-155
до 500		+540	+820	+1250				
Интервал		Поля допу	сков ва.	лов с 10-	-го по 1	2-й ква	литеты	
размеров,	d10	h10	a11	<i>b</i> 11	c11	d11	<i>h</i> 11	<i>b</i> 12
MM		Верхние	1	1	l .	I	. MKM	
0 1 2	-20	0	-270	-140	-60	-20	0	-140
От 1 до 3	-60	-40	-330	-200	-120	-80	-60	-240
	-30	0	-270	-140	-70	-30	0	-140
Св. 3 до 6	-78	-48	-345	-215	-145	-105	-75	-260
G (10	-40	0	-280	-150	-80	-40	0	-150
Св. 6 до 10	-98	-58	-370	-240	-170	-130	-90	-300
G 10 10	-50	0	-290	-150	-95	-50	0	-150
Св. 10 до 18	-120	-7 0	-400	-260	-205	-160	-110	-330
G 10	-65	0	-300	-160	-110	-65	0	-160
Св. 18 до 30	-149	-84	-430	-290	-240	-195	-130	-370
			-310	-170	-120			-170
Св. 30 до 40	-80	0	-470	-330	-280	-80	0	-420
G 40 70	-180	-100	-320	-180	-130	-240	-160	-180
Св. 40 до 50			-480	-340	-290			-430
						l	l	

Продолжение прил. 2 Продолжение табл. 2.1

						продол	жение	таол. 2.1
Св. 50			-340	-190	-140			-190
до 65	-100	0	-530	-380	-330	-100	0	-490
Св. 65	-220	-120	-360	-200	-150	-290	-190	-200
до 80			-550	-390	-340			-500
Св. 80			-380	-220	-170			-220
до 100	-120	0	-600	-440	-390	-120	0	-570
Св. 100	-260	-140	-410	-240	-180	-340	-220	-240
до 120			-630	-460	-400			-590
Св. 120			-460	-260	-200			-260
до 140			-710	-510	-450			-660
Св. 140	-145	0	-520	-280	-210	-145	0	-280
до 160	-305	-160	-770	-530	-460	-395	-250	-680
Св. 160			-580	-310	-230			-310
до 180			-830	-560	-480			-710
Св. 180			-660	-340	-240			-340
до 200			-950	-630	-530			-800
Св. 200	-170	0	-740	-380	-260	-170	0	-380
до 225	-355	-185	-1030	-670	-550	-460	-290	-840
Св. 225			-820	-420	-280			-420
до 250			-1110	-710	-570			-880
Св. 250	100		-920	-480	-300			-480
до 280	-190	0	-1240	-800	-620	-190	0	-1000
Св. 280	-400	-210	-1050	-540	-330	-510	-320	-540
до 315			-1370	-860	-650			-1060
Св. 315			-1200	-600	-360			-600
до 355	-210	0	-1560	-960	-720	-210	0	-1170
Св. 355	-440	-230	-1350	-680	-400	-570	-360	-680
до 400			-1710	-1040	-760			-1250
Св. 400			-1500	-760	-440			-760
до 450	-230	0	-1900	-1160	-840	-230	0	-1390
Св. 450	-480	-250	-1650	-840	-480	-630	-400	-840
до 500			-2050	-1240	-880			-1470
Интервал		Поля допус	сков вал	юв с 12-	-го по	17-й ква	алитеть	ы
размеров,	h12	js12	h13	<i>h</i> 14	h15	h16	h	17
MM		Верхние	(es) и н	ижние (<i>еі</i>) откі	тонени	я, мкм	
Om 1 == 2	0	+50	0	0	0	0	T T	0
От 1 до 3	-100	-50	-140	-250	-400	-600	-1	000
Cn 2 - 2 (0	+60	0	0	0	0		0
Св. 3 до 6	-120	-60	-180	-300	-480	-750	-1	200
	•		•		•			

Продолжение прил. 2 Окончание табл. 2.1

Окончание таол. 2.1											
Св. 6 до 10	0	+75	0	0	0	0	0				
Св. 6 до 10	-150	-75	-220	-360	-580	-900	-1500				
Съ 10 то 19	0	+90	0	0	0	0	0				
Св. 10 до 18	-180	-90	-270	-430	-700	-1100	-1800				
Съ 18 до 20	0	+105	0	0	0	0	0				
Св. 18 до 30	-210	-105	-330	-520	-840	-1300	-2100				
Съ 20 до 50	0	+125	0	0	0	0	0				
Св. 30 до 50	-250	-125	-390	-620	-1000	-1600	-2500				
Cp. 50 To 90	0	+150	0	0	0	0	0				
Св. 50 до 80	-300	-150	-460	-740	-1200	-1900	-3000				
Св. 80	0	+175	0	0	0	0	0				
до 120	-350	-175	-540	-870	-1400	-2200	-3500				
Св. 120	0	+200	0	0	0	0	0				
до 180	-400	-200	-630	-1000	-1600	-2500	-4000				
Св. 180											
до 200											
Св. 200	0	+230	0	0	0	0	0				
до 225	-460	-230	-720	-1150	-1850	-2900	-4600				
Св. 225											
до 250											
Св. 250											
до 280	0	+260	0	0	0	0	0				
Св. 280	-520	-260	-810	-1300	-2100	-3200	-5200				
до 315											
Св. 315											
до 355	0	+285	0	0	0	0	0				
Св. 355	-570	-285	-890	-1400	-2300	-3600	-5700				
до 400											
Св. 400											
до 450	0	+315	0	0	0	0	0				
Св. 450	-630	-315	-970	-1550	-2500	-4000	-6300				
до 500											
				-							

Продолжение прил. 2 Таблица 2.2

Предельные отклонения отверстий от 1 до 500 мм

		P - 7							о крад				
Интервал		TT=			1	1			то квалі			376	D.(
размеров,	G5	<i>H</i> 5	J_S 5	<i>K</i> 5	<i>M</i> 5	l	l .	<i>H</i> 6	$J_S 6$		<i>M</i> 6		<i>P</i> 6
MM			Bepx	кние	(ES)	и ни:	жние	(EI)	ОТКЛОН	ения	, MKN	1	
От 1 до 3	+6	+4	+2,0	0	-2	-4	+8	+6	+3,0	0	-2	-4	-6
ОТТДОЗ	+2	0	-2,0	-4	-6	-8	+2	0	-3,0	-6	-8	-10	-12
Св. 3	+9	+5	+2,5	0	-3	-7	+12	+8	+4,0	+2	-1	-5	-9
до 6	+4	0	-2,5	-5	-8	-12	+4	0	-4,0	-6	-9	-13	-17
Св. 6	+11	+6	+3,0	+1	-4	-8	+14	+9	+4,5	+2	-3	- 7	-12
до 10	+5	0	-3,0	-5	-10	-14	+5	0	-4,5	-7	-12	-16	-21
Св. 10	+14	+8	+4,0	+2	-4	-9	+17	+11	+5,5	+2	-4	-9	-15
до 18	+6	0	-4,0	-6	-12	-17	+6	0	-5,5	-9	-15	-20	-25
Св. 18	+16	+9	+4,5	+1	-5	-12	+20	+13	+6,5	+2	-4	-11	-18
до 30	+7	0	-4,5	-8	-14	-21	+7	0	-6,5	-11	-17	-24	-31
Св. 30	+20	+11	+5,5	+2	-5	-13	+25	+16	+8,0	+3	-4	-12	-21
до 50	+9	0	-5,5	-9	-16	-24	+9	0	-8,0	-13	-20	-28	-37
Св. 50	+23	+13	+6,5	+3	-6	-15	+29	+19	+9,5	+4	-5	-14	-26
до 80	+10	0	-6,5	-10	-19	-28	+10	0	-9,5	-15	-24	-33	-45
Св. 80	+27	+15	+7,5	+2	-8	-18	+34	+22	+11,0	+4	-6	-16	30
до 120	+12	0	-7,5	-13	-23	-33	+12	0	-11,0	-18	-28	-38	-52
Св. 120	+32	+18	+9,0	+3	-9	-21	+39	+25	+12,5	+4	-8	-20	-36
до 180	+14	0	-9,0	-15	-27	-39	+14	0	-12,5	-21	-33	-45	-61
Св. 180	+35	+20	+10,0	+2	-11	-25	+44	+29	+14,5	+5	-8	-22	-41
до 250	+15	0	-10,0	-18	-31	-45	+15	0	-14,5	-24	-37	-51	-70
Св. 250	+40	+23	+11,5	+3	-13	-27	+49	+32	+16,0	+5	_9	-25	-47
до 315	+17		-11,5						-16,0		-41		-79
Св. 315	+41	+25	+12,5	+3	-14	-30	+54	+36	+18,0	+7	-10	-26	-51
до 400	+18		-12,5						-18,0	-29	-46	-62	-87
Св. 400	+47	+27	+13,5	+2	-16	-33	+60	+40	+20,0	+8	-10	-27	-55
до 500	+20	0	-13,5	-25	-43	-60	+20	0	-20,0	-32	-50	-67	-95

Продолжение прил. 2 Продолжение табл. 2.2

TI			Пол	ія допу	сков с	тверс	тий 7-г			ine ra	OJI. 2.2
Интервал	<i>F</i> 7	<i>G</i> 7	<i>H</i> 7	J_S7	<i>K</i> 7	<i>M</i> 7	<i>N</i> 7	P7	<i>R</i> 7	<i>S</i> 7	<i>T</i> 7
размеров,			l.) 11 1111	ACTUAL OF	(<i>EI</i>) отк		10 100		
					<u> </u>	1	` /	1	1	1	
От 1	+16	+12	+10	+5	0	-2	-4	-6	-10	-14	_
до 3	+6	+2	0	_5	-10	-10	-14	-16	-20	-24	
Св. 3	+22	+16	+12	+6	+3	0	-4	-8	-11	-15	_
до 6	+10	+4	0	-6	_9	-12	-16	-20	-23	-27	
Св. 6	+28	+20	+15	+7	+5	0	-4	– 9	-13	-17	_
до 10	+13	+5	0	_7	-10	-15	-19	-24	-28	-32	
Св. 10	+34	+24	+10	+9	+6	0	-5	-11	-16	-21	
до 18	+16	+6	0	-9	-12	-18	-23	-29	-34	-39	
Св. 18											
до 24	+41	+28	+21	+10	+6	0	- 7	-14	-20	-27	_
Св. 24	+20	+7	0	-10	-15	-21	-28	-35	-41	-48	-33
до 30											-54
Св. 30											-39
до 40	+50	+34	+25	+12	+7	0	-8	-17	-25	34	-64
Св. 40	+25	+9	0	-12	-18	-25	-33	-42	-50	-59	-45
до 50											-70
Св. 50									-30	-42	-55
до 65	+60	+40	+30	+15	+9	0	-9	21	-60	-72	-85
Св. 65	+30	+10	0	-15	-21	-30	-39	-51	-32	-48	-64
до 80									-62	-78	-94
Св. 80									-38	-58	-78
до 100	+71	+47	+35	+17	+10	0	-10	-24	-73	-93	-113
Св. 100 до	+36	+12	0	-17	-25	-35	– 45	-59	-4 1	-66	-91
120									-76	-101	-126
Св. 120 до									-48	-77	-107
140									-88	-117	
Св. 140 до		+54	+40	+20	+12	0	-12	-28	-50	-85	-119
160	+43	+14	0	-20	-28	-40	-52	-68	-90	-125	
Св. 160 до									-53	-93	-131
180									-93	-133	-171
Св. 180 до									-60	-105	
200				<u></u>		_				-151	
Св. 200 до		+61	+46	+23	+13	0	-14	-33 -50	-63	-113	-163
225	+50	+15	0	-24	-33	-46	-60	- 79	-109		
Св. 225 до									-67	-123	−179
250									-113	-169	-225

CB. 250 до 280 +108 +69 +52 +26 +16 0 -14 -36 -126 -190 -250 CB. 280 до 315 +56 +17 0 -26 -36 -52 -66 -88 -78 -150 -220 CB. 315 до 355 +119 +75 +57 +28 +17 0 -16 -41 -144 -226 -304 CB. 355 до 402 +18 0 -28 -40 -57 -73 -98 -93 -187 -273 CB. 400 до 400 +131 +83 +63 +31 +18 0 -17 -45 -166 -272 -370 CB. 400 до 500 +131 +83 +63 +31 +18 0 -17 -45 -166 -272 -370 UHITCPBBAT (BBAT) BER F8 H8 Js K8 M8 N8 US D9 E9 BERNHUE (ES) HUBHUE (ES) HUBHUE (ES) HUBHUE (EI)	_		1						Прод	олжен	ие тас	ол. 2.2
Св. 280 до 315 +56 +17 0 -26 -36 -52 -66 -88 -78 -150 -220 -272 Св. 315 до 355 +119 +75 +57 +28 +17 0 -16 -41 -144 -226 -304 Св. 355 до 400 +62 +18 0 -28 -40 -57 -73 -98 -93 -187 -273 400 +62 +18 0 -28 -40 -57 -73 -98 -93 -187 -273 400 450 +131 +83 +63 +31 +18 0 -17 -45 -166 -272 -370 500 +00 -31 -45 -63 -80 -108 -109 -229 -337 6 -50 -88 +8 +8 +8 18 48 8 8 8 8 8 109 -29 -337 -172	Св. 250 до									-74	-138	-198
315 CB. 315 до 355 H119 +75 +57 +28 +17 0 -16 -41 -144 -226 -304 400 450 +131 +83 +63 +31 +18 0 -17 -45 -166 -272 -370 -172 -292 -400 -305 -172 -292 -400 -31 +34 +28 +20 0 -31 -45 -63 -80 -108 -109 -229 -337 -172 -292 -400 -294 -340	280	+108	+69	+52	+26	+16	0	-14	-36	-126	-190	-250
Св. 315 до 355 до 462 +18 р. 462 +18 г. 400 г. 28 г.	Св. 280 до	+56	+17	0	-26	-36	-52	-66	-88	-78	-150	-220
SS5 H119 H75 H57 H28 H17 O H26 H26 H26 H26 H27 H26 H27 H26 H27 H26 H27 H26 H26	315									-130	-202	-272
Св. 355 дю 400 +62 +18 0 -28 -40 -57 -73 -98 -93 -187 -273 400 дол 450 дю 450 +131 +83 +63 +31 +18 0 -17 -45 -166 -272 -370 Ов. 450 дю 500 +68 +20 0 -31 -45 -63 -80 -108 -109 -229 -337 Ов. 500 Ворхине (ЕВ) и нижние (ЕП) отклонения, ми -172 -292 -400 Интервал размеров, мм Верхине (ЕВ) и нижние (ЕП) отклонения, мкм -18 -45 +39 E9 Верхние (ЕВ) и нижние (ЕП) отклонения, мкм -18 +45 +39 +20 +14 +7 0 -4 -18 +45 +39 +39 +20 +14 -46 0 -7 -14 -8 -32 +20 +14 -46 0 -7 -14 -18 +45 +39 +39 +50 -22	Св. 315 до									-87	-169	-247
400 Налана Налана </td <td>355</td> <td>+119</td> <td>+75</td> <td>+57</td> <td>+28</td> <td>+17</td> <td>0</td> <td>-16</td> <td>-41</td> <td>-144</td> <td>-226</td> <td>-304</td>	355	+119	+75	+57	+28	+17	0	-16	-4 1	-144	-226	-304
Св. 400 до 450 +131 +83 +63 +31 +18 0 -17 -45 -166 -272 -370 Св. 450 до 500 +68 +20 0 -31 -45 -63 -80 -108 -109 -229 -337 Интервал размеров, мм Верхние (ES) и нижние (EI) отклонения, мкм От 1 +34 +28 +20 +14 +7 0 -4 -18 +45 +39 до 3 +20 +14 +6 0 -7 -14 - -4 -18 +45 +39 до 6 +30 +20 +10 0 -9 -13 -16 -20 -41 +30 +20 Св. 6 +62 +47 +35 +22 +11 +6 +1 -3 -28 +76 +61 до 10 +40 +25 +13 0 -11 -16 -21 -25 -50 <td>Св. 355 до</td> <td>+62</td> <td>+18</td> <td>0</td> <td>-28</td> <td>-40</td> <td>-57</td> <td>-73</td> <td>-98</td> <td>-93</td> <td>-187</td> <td>-273</td>	Св. 355 до	+62	+18	0	-28	-40	-57	-73	-98	-93	-187	-273
450 +131 +83 +63 +31 +18 0 -17 -45 -166 -272 -370 Св. 450 до 500 +68 +20 0 -31 -45 -63 -80 -108 -109 -229 -337 Интервал размеров, мм Поля допусков отверстий 8-го и 9-го квалитетов Верхние (ES) и нижние (EI) отклонения, мкм От 1 +34 +28 +20 +14 +7 0 -4 -18 +45 +39 до 3 +20 +14 +7 0 -4 -18 +45 +39 до 6 +30 +20 +10 0 -9 -13 -16 -20 -41 +30 +20 Св. 6 +62 +47 +35 +22 +11 +6 +1 -3 -28 +76 +61 до 10 +40 +25 +13 0 -11 -16 -21 -25 -50 +40	400									-150	-244	-330
Св. 450 до 500 +68 +20 0 -31 -45 -63 -63 -80 -108 -109 -229 -337 -172 -292 -400 Поля допусков отверстий 8-го и 9-го квалитетов Поля допусков отверстий 8-го и 9-го квалитетов Верхние (ES) и нижние (EI) отклонения, мкм От 1 +34 +28 +28 +20 +14 +7 04 -18 +45 +39 до 3 +20 +14 +6 0 -7 -1418 -32 +20 +14 -10 -18 -32 +20 +14 +39 +40 +45 +39 +40 +40 +20 +10 0 -9 -13 -16 -20 -41 +30 +20 +30 +20 +10 0 -9 -13 -16 -20 -41 +30 +20 -40 +50 +50 +50 +40 +20 -50 +40 +25 +61 до 10 +40 +25 +13 0 -11 -16 -21 -25 -50 +40 +25 -50 +40 +25 -50 +40 +25 -61 до 10 +40 +25 +13 0 -11 -16 -21 -25 -50 +40 +25 -60 +50 +32 -41 go -16 -23 -29 -36 -48 +65 +40 +32 -41 go -24 -41 go -41	Св. 400 до									-103	-209	-307
Нитервал размеров, мм Поля допусков отверстий 8-го и 9-го квалитетов Поля допусков отверстий 8-го и 9-го квалитетов Верхние (ES) и нижние (EI) отклонения, мкм От 1 +34 +28 +28 +20 +14 +6 0 -7 -14	450	+131	+83	+63	+31	+18	0	-17	-45	-166	-272	-370
Поля допусков отверстий 8-го и 9-го квалитетов D8 E8 F8 H8 J ₃ 8 K8 M8 N8 U8 D9 E9 Верхние (ES) и нижние (EI) отклонения, мкм От 1 +34 +28 +20 +14 +6 0 -7 -14 -7 -18 +32 +20 +14 Св. 3 +48 +38 +28 +18 +9 +5 +2 -2 -23 +60 +50 до 6 +30 +20 +10 0 -9 -13 -16 -20 -41 +30 +20 Св. 6 +62 +47 +35 +22 +11 +6 +1 -3 -28 +76 +61 до 10 +40 +25 +13 0 -11 -16 -21 -25 -50 +40 +25 Св. 10 +77 +59 +43 +27 +13 +8 +2 -3 -33 +93 +75 до 18 +50 +32 +16 0 -13 -19 -25 -30 -60 +50 +32 Св. 18 до 24 +98 +73 +53 +33 +33 +16 +10 +4 -3 -74 +117 +92 Св. 24 +65 +40 +20 0 -16 -23 -29 -36 -48 +65 +40 до 30 Св. 30 до 40 +119 +89 +64 +39 +19 +12 +5 -3 -99 +142 +112 (5 -30) Св. 50 до 65 +146 +106 +76 +46 +23 +14 +5 -4 -133 +174 +134 (5 -40) Св. 80 до 65 +146 +106 +76 +46 +23 +14 +5 -4 -133 +174 +134 (5 -40) Св. 80 до 100 +174 +126 +90 +54 +27 +16 +6 -4 -178 +207 +159 (5 -100 до +120 +72 +36) Св. 100 до 100 +174 +126 +90 +54 +27 +16 +6 -4 -178 +207 +159 (5 -100 до +120 +72 +36) Св. 100 до 100 +174 +126 +90 +54 +27 +16 +6 -4 -178 +207 +159 (5 -100 до +120 +72 +36) -10 на на при каза	Св. 450 до	+68	+20	0	-31	-45	-63	-80	-108	-109	-229	-337
Интервал размеров, мм D8 E8 F8 H8 J _S 8 K8 M8 N8 U8 D9 E9 ОТ 1 +34 +28 +20 +14 +7 0 — -4 -18 +45 +39 до 3 +20 +14 +6 0 -7 -14 — -18 -32 +20 +14 Св. 3 +48 +38 +28 +18 +9 +5 +2 -2 -23 +60 +50 до 6 +30 +20 +10 0 -9 -13 -16 -20 -41 +30 +20 Св. 6 +62 +47 +35 +22 +11 +6 +1 -3 -28 +76 +61 до 10 +40 +25 +13 0 -11 -16 -21 -25 -50 +40 +25 Св. 10 +77 +59 +43 +27 <t< td=""><td>500</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-172</td><td>-292</td><td>-400</td></t<>	500									-172	-292	-400
Интервал размеров, мм D8 E8 F8 H8 J _S 8 K8 M8 N8 U8 D9 E9 ОТ 1 +34 +28 +20 +14 +7 0 — -4 -18 +45 +39 до 3 +20 +14 +6 0 -7 -14 — -18 -32 +20 +14 Св. 3 +48 +38 +28 +18 +9 +5 +2 -2 -23 +60 +50 до 6 +30 +20 +10 0 -9 -13 -16 -20 -41 +30 +20 Св. 6 +62 +47 +35 +22 +11 +6 +1 -3 -28 +76 +61 до 10 +40 +25 +13 0 -11 -16 -21 -25 -50 +40 +25 Св. 10 +77 +59 +43 +27 <t< td=""><td></td><td></td><td>П</td><td>опа па</td><td>эпуско</td><td>R OTRE</td><td>остий</td><td>8-го и</td><td>0-LO KB</td><td>апитет</td><td>'nΡ</td><td></td></t<>			П	опа па	эпуско	R OTRE	остий	8-го и	0-LO KB	апитет	'nΡ	
Верхние (ES) и нижние (EI) отклонения, мкм От 1 +34 +28 +20 +14 +7 0 — -4 -18 +45 +39 до 3 +20 +14 +6 0 -7 -14 — -18 -32 +20 +14 Св. 3 +48 +38 +28 +18 +9 +5 +2 -2 -23 +60 +50 до 6 +30 +20 +10 0 -9 -13 -16 -20 -41 +30 +20 Св. 6 +62 +47 +35 +22 +11 +6 +1 -3 -28 +76 +61 до 10 +40 +25 +13 0 -11 -16 -21 -25 -50 +40 +25 Св. 10 +77 +59 +43 +27 +13 +8 +2 -3 -33 +93 +75 до 18 +50 +32 +16	Интервал		1				L .		ı	l		
От 1 +34 +28 +20 +14 +7 0 — —4 —18 +45 +39 до 3 +20 +14 +6 0 —7 —14 — —18 —32 +20 +14 Св. 3 +48 +38 +28 +18 +9 +5 +2 —2 —23 +60 +50 до 6 +30 +20 +10 0 —9 —13 —16 —20 —41 +30 +20 Св. 6 +62 +47 +35 +22 +11 +6 +1 —3 —28 +76 +61 до 10 +40 +25 +13 0 —11 —16 —21 —25 —50 +40 +25 Св. 10 +77 +59 +43 +27 +13 +8 +2 —3 —33 +93 +75 до 18 +50 +32 +16 0 —13 —19	размеров,	<i>D</i> 8	<i>E</i> 8	<i>F</i> 8	H8	$J_S 8$	<i>K</i> 8	<i>M</i> 8	N8	<i>U</i> 8	<i>D</i> 9	<i>E</i> 9
до 3 +20 +14 +6 0 -7 -14 - -18 -32 +20 +14 Св. 3 +48 +38 +28 +18 +9 +5 +2 -2 -23 +60 +50 до 6 +30 +20 +10 0 -9 -13 -16 -20 -41 +30 +20 Св. 6 +62 +47 +35 +22 +11 +6 +1 -3 -28 +76 +61 до 10 +40 +25 +13 0 -11 -16 -21 -25 -50 +40 +25 Св. 10 +77 +59 +43 +27 +13 +8 +2 -3 -33 +93 +75 до 18 +50 +32 +16 0 -13 -19 -25 -30 -60 +50 +32 Св. 18 до 24 +98 +73 +53 +33 +16<	MM		-	Верхі	ние (<i>ES</i>) и ни:	жние ((EI) отв	слонени	ия, мки	М	
Св. 3 +48 +38 +28 +18 +9 +5 +2 -2 -23 +60 +50 до 6 +30 +20 +10 0 -9 -13 -16 -20 -41 +30 +20 Св. 6 +62 +47 +35 +22 +11 +6 +1 -3 -28 +76 +61 до 10 +40 +25 +13 0 -11 -16 -21 -25 -50 +40 +25 Св. 10 +77 +59 +43 +27 +13 +8 +2 -3 -33 +93 +75 до 18 +50 +32 +16 0 -13 -19 -25 -30 -60 +50 +32 Св. 18 до 24 +98 +73 +53 +33 +16 +10 +4 -3 -74 +117 +92 Св. 30 до 40 +119 +89 +64	От 1	+34	+28	+20	+14	+7	0		-4	-18	+45	+39
до 6 +30 +20 +10 0 -9 -13 -16 -20 -41 +30 +20 Св. 6 +62 +47 +35 +22 +11 +6 +1 -3 -28 +76 +61 до 10 +40 +25 +13 0 -11 -16 -21 -25 -50 +40 +25 Св. 10 +77 +59 +43 +27 +13 +8 +2 -3 -33 +93 +75 до 18 +50 +32 +16 0 -13 -19 -25 -30 -60 +50 +32 Св. 18 до 24 +98 +73 +53 +33 +16 +10 +4 -3 -74 +117 +92 Св. 24 +65 +40 +20 0 -16 -23 -29 -36 -48 +65 +40 до 30 до 40 +119 +89 +64	до 3	+20	+14	+6	0	-7	-14		-18	-32	+20	+14
Св. 6 +62 +47 +35 +22 +11 +6 +1 -3 -28 +76 +61 до 10 +40 +25 +13 0 -11 -16 -21 -25 -50 +40 +25 Св. 10 +77 +59 +43 +27 +13 +8 +2 -3 -33 +93 +75 до 18 +50 +32 +16 0 -13 -19 -25 -30 -60 +50 +32 Св. 18 до 24 +98 +73 +53 +33 +16 +10 +4 -3 -74 +117 +92 Св. 24 +65 +40 +20 0 -16 -23 -29 -36 -48 +65 +40 до 30	Св. 3	+48	+38	+28	+18	+9	+5	+2	-2	-23	+60	+50
до 10 +40 +25 +13 0 -11 -16 -21 -25 -50 +40 +25 Св. 10 +77 +59 +43 +27 +13 +8 +2 -3 -33 +93 +75 до 18 +50 +32 +16 0 -13 -19 -25 -30 -60 +50 +32 Св. 18 до 24 +98 +73 +53 +33 +16 +10 +4 -3 -74 +117 +92 Св. 24 +65 +40 +20 0 -16 -23 -29 -36 -48 +65 +40 до 30 -81 -81 -81 -81 -81 -81 -81 -81 -81 -81 -81 -81 -81 -81 -81 -81 -81 -81 -82 -83 -84 -42 -70 +80 +50 -87 -87 -87 -87 -87	до 6	+30	+20	+10	0	_9	-13	-16	-20	-41	+30	+20
Св. 10 +77 +59 +43 +27 +13 +8 +2 -3 -33 +93 +75 до 18 +50 +32 +16 0 -13 -19 -25 -30 -60 +50 +32 Св. 18 до 24 +98 +73 +53 +33 +16 +10 +4 -3 -74 +117 +92 Св. 24 +65 +40 +20 0 -16 -23 -29 -36 -48 +65 +40 до 30 до 40 +119 +89 +64 +39 +19 +12 +5 -3 -99 +142 +112 Св. 40 +80 +50 +25 0 -19 -27 -34 -42 -70 +80 +50 до 50 до 65 +146 +106 +76 +46 +23 +14 +5 -4 -133 +174 +134 Св. 65 до 100 +60 +30 0 -23 -32 -41 -50 -102 +100	Св. 6	+62	+47	+35	+22	+11	+6	+1	-3	-28	+76	+61
до 18 +50 +32 +16 0 -13 -19 -25 -30 -60 +50 +32 Св. 18 до 24 +98 +73 +53 +33 +16 +10 +4 -3 -74 +117 +92 Св. 24 +65 +40 +20 0 -16 -23 -29 -36 -48 +65 +40 до 30 до 40 +119 +89 +64 +39 +19 +12 +5 -3 -99 +142 +112 Св. 40 +80 +50 +25 0 -19 -27 -34 -42 -70 +80 +50 до 50 до 65 +146 +106 +76 +46 +23 +14 +5 -4 -133 +174 +134 Св. 65 +100 +60 +30 0 -23 -32 -41 -50 -102 +100 +60 до 80 до 100	до 10	+40	+25	+13	0	-11	-16	-21	-25	-50	+40	+25
Св. 18 до 24 +98 +73 +53 +33 +16 +10 +4 -3 -74 +117 +92 Св. 24 +65 +40 +20 0 -16 -23 -29 -36 -48 +65 +40 до 30 до 40 +119 +89 +64 +39 +19 +12 +5 -3 -99 +142 +112 Св. 40 +80 +50 +25 0 -19 -27 -34 -42 -70 +80 +50 до 50 до 65 +146 +106 +76 +46 +23 +14 +5 -4 -133 +174 +134 Св. 65 +100 +60 +30 0 -23 -32 -41 -50 -102 +100 +60 до 80 до 100 +174 +126 +90 +54 +27 +16 +6 -4 -178 +207 +159 Св. 100 до 100 +120 +72 +36 0 -27 -38 -48 -58 <t< td=""><td>Св. 10</td><td>+77</td><td>+59</td><td>+43</td><td>+27</td><td>+13</td><td>+8</td><td>+2</td><td>-3</td><td>-33</td><td>+93</td><td>+75</td></t<>	Св. 10	+77	+59	+43	+27	+13	+8	+2	-3	-33	+93	+75
ДО 24 +98 +73 +53 +33 +16 +10 +4 -3 -74 +117 +92 СВ. 24 +65 +40 +20 0 -16 -23 -29 -36 -48 +65 +40 ДО 30 ДО 30 ДО 40 +119 +89 +64 +39 +19 +12 +5 -3 -99 +142 +112 СВ. 40 +80 +50 +25 0 -19 -27 -34 -42 -70 +80 +50 ДО 50 ДО 65 +146 +106 +76 +46 +23 +14 +5 -4 -133 +174 +134 СВ. 65 +100 +60 +30 0 -23 -32 -41 -50 -102 +100 +60 ДО 80 ДО 100 +174 +126 +90 +54 +27 +16 +6 -4 -178 +207 +159 Св. 100 до 1	до 18	+50	+32	+16	0	-13	-19	-25	-30	-60	+50	+32
Св. 24 до 30 +65 +40 +20 0 -16 -23 -29 -36 -48 +65 +40 +40 +40 Св. 30 до 40 +119 +89 +64 +39 +19 +12 +5 -3 -99 +142 +112 -60 -99 +142 +112 Св. 40 до 50 +80 +50 +25 0 -19 -27 -34 -42 -70 +80 +50 Св. 50 до 50 -87 -87 -87 -87 Св. 50 до 80 -87 -41 -50 -102 +100 +60 +76 +46 +23 +14 +5 -4 -133 +174 +134 Св. 65 до 80 до 100 +174 +126 +90 до 100 до 120 +72 +36 0 -27 -38 -48 -58 -144 +120 +72	Св. 18									-41		
ДО 30 —81 СВ. 30 —760 ДО 40 —119 Н 19 —89 Н 19 —19 СВ. 40 —80 ДО 50 —19 СВ. 50 —109 ДО 65 —146 Н 106 —109 СВ. 65 —100 ДО 80 —100 СВ. 80 —124 ДО 100 —174 —120 —130 —124	до 24	+98	+73	+53	+33	+16	+10	+4	-3	-74	+117	+92
Св. 30 40 +119 +89 +64 +39 +19 +12 +5 -3 -99 +142 +112 Св. 40 +80 +50 +25 0 -19 -27 -34 -42 -70 +80 +50 до 50 до 65 +146 +106 +76 +46 +23 +14 +5 -4 -133 +174 +134 Св. 65 +100 +60 +30 0 -23 -32 -41 -50 -102 +100 +60 Св. 80 до 100 +174 +126 +90 +54 +27 +16 +6 -4 -178 +207 +159 Св. 100 до +120 +72 +36 0 -27 -38 -48 -58 -144 +120 +72	Св. 24	+65	+40	+20	0	-16	-23	-29	-36	-48	+65	+40
до 40 +119 +89 +64 +39 +19 +12 +5 -3 -99 +142 +112 Св. 40 +80 +50 +25 0 -19 -27 -34 -42 -70 +80 +50 до 50 -109 -109 -27 -34 -42 -70 +80 +50 Св. 50 -109	до 30									-81		
Св. 40 до 50 +80 +50 +25 0 -19 -27 -34 -42 -70 +80 +50 до 50 Св. 50 до 65 +146 +106 +76 +46 +23 +14 +5 -4 -133 +174 +134 Св. 65 до 80 +100 +60 +30 0 -23 -32 -41 -50 -102 +100 +60 до 80 Св. 80 до 100 +174 +126 +90 +54 до 100 до +120 +72 +36 0 -27 -38 -48 -58 -144 +120 +72	Св. 30									-60		
ДО 50 ————————————————————————————————————	до 40	+119	+89	+64	+39	+19	+12	+5	-3	-99	+142	+112
Св. 50 +146 +106 +76 +46 +23 +14 +5 -4 -133 +174 +134 Св. 65 +100 +60 +30 0 -23 -32 -41 -50 -102 +100 +60 до 80 -124 -124 -124 -124 -124 -124 -124 -124 Св. 80 -100 +174 +126 +90 +54 +27 +16 +6 -4 -178 +207 +159 Св. 100 до +120 +72 +36 0 -27 -38 -48 -58 -144 +120 +72	Св. 40	+80	+50	+25	0	-19	-27	-34	-42	-70	+80	+50
до 65 +146 +106 +76 +46 +23 +14 +5 -4 -133 +174 +134 Св. 65 +100 +60 +30 0 -23 -32 -41 -50 -102 +100 +60 до 80 -148 Св. 80 -124 -124 -124 Св. 100 до +174 +126 +90 +54 +27 +16 +6 -4 -178 +207 +159 Св. 100 до +120 +72 +36 0 -27 -38 -48 -58 -144 +120 +72	до 50									-109		
Св. 65 до 80 +100 +60 +30 0 -23 -32 -41 -50 -102 +100 +60 -148 Св. 80 до 100 +174 +126 +90 +54 Св. 100 до +120 +72 +36 0 -27 -38 -48 -58 -144 +120 +72	Св. 50									-87		
до 80 ————————————————————————————————————	до 65	+146	+106	+76	+46	+23	+14	+5	-4	-133	+174	+134
Св. 80 ————————————————————————————————————	Св. 65	+100	+60	+30	0	-23	-32	-41	-50	-102	+100	+60
до 100 +174 +126 +90 +54 +27 +16 +6 -4 -178 +207 +159 Св. 100 до +120 +72 +36 0 -27 -38 -48 -58 -144 +120 +72	до 80									-148		
Св. 100 до +120 +72 +36 0 -27 -38 -48 -58 -144 +120 +72	Св. 80									-124		
	до 100	+174	+126	+90	+54	+27	+16	+6	-4	-178	+207	+159
120 -198	Св. 100 до	+120	+72	+36	0	-27	-38	-48	-58	-144	+120	+72
	120									-198		

								прод	олжен	ие та	<u>бл. 2.2</u>
Св. 120 до									-170		
140									-233		
Св. 140 до	+208	+148	+106	+63	+31	+20	+8	-4	-190	+245	+185
160	+145	+85	+43	0	-31	-43	-55	-67	-253	+145	+85
Св. 160 до									-210		
180									-273		
Св. 180 до									-236		
200									-308		
Св. 200 до	+242	+172	+122	+72	+36	+22	+9	-5	-258	+285	+215
225	+170	+100	+50	0	-36	-50	-63	-77	-330	+170	+100
Св. 225 до									-284		
250									-356		
Св. 250 до									-315		
280	+271	+191	+137	+81	+40	+25	+9	-5	-396	+320	+240
Св. 280 до	+190	+110	+56	0	-40	-56	-72	+86	-350	+190	+110
315									-431		
Св. 315 до									-390		
355	+299	+214	+151	+89	+44	+28	+11	-5	-479	+350	+265
Св. 355 до	+210	+125	+62	0	-44	-61	-78	-94	-435	+210	+125
400									-524		
Св. 400 до									-490		
450	+327	+232	+165	+97	+48	+29	+11	-6	-587	+385	+290
Св. 450 до	+230	+135	+68	0	-48	-68	-86	-103	-540	+230	+135
500									-637		
Интервал		По	ля до	пусков	отвер	стий	9-го и 1	1-го кі	залите	ТОВ	
размеров,	<i>F</i> 9	<i>H</i> 9	J_S 9	D10	<i>H</i> 10	$J_S 10$	<i>A</i> 11	<i>B</i> 11	<i>C</i> 11	<i>D</i> 11	<i>H</i> 11
MM		-	Верхі	ние (<i>ES</i>) и ни:	жние	(EI) отк	лонені	ия, мкі	M	
От 1	+31	+25	+12	+60	+40	+20	+330	+200	+120	+80	+60
до 3	+6	0	-12	+20	0	-20	+270	+140	+60	+20	0
Св. 3	+40	+30	+15	+78	+48	+24	+345	+215	+145	+105	+75
до 6	+10	0	-15	+30	0	-24	+270	+140	+70	+30	0
Св. 6	+49	+36	+18	+98	+58	+29	+370	+240	+170	+130	+90
до 10	+13	0	-18	+40	0	-29	+280	+150	+80	+40	0
Св. 10	+59	+43	+21	+120	+70	+35	+400	+260	+205	+160	+110
до 18	+16	0	-21	+50	0	-35	+290	+150	+95	+50	0
Св. 18											
до 24	+72	+52	+26	+149	+84	+42	+430	+290	+240	+195	+130
Св. 24	+20	0	-26	+65	0	-42	+300	+160	+110	+65	0
до 30											

							1	трод	CULLING	1110 100	JJI. Z.Z
Св. 30							+470	+330	+280		
до 40	+87	+62	+31	+180	+100	+50	+310	+170	+120	+240	+160
Св. 40	+25	0	-31	+80	0	-50	+480	+340	+290	+80	0
до 50							+320	+180	+130		
Св. 50							+530	+380	+330		
до 65	+104	+74	+37	+220	+120	+60	+340	+190	+140	+290	+190
Св. 65	+30	0	-37	+100	0	-60	+550	+390	+340	+100	0
до 80							+360	+200	+150		
Св. 80							+600	+440	+390		
до 100	+123	+87	+43	+260	+140	+70	+380	+220	+170	+340	+220
Св. 100	+36	0	-43	+120	0	-70	+630	+460	+400	+120	0
до 120							+410	+240	+180		
Св. 120							+710	+510	+450		
до 140							+460	+260	+200		
Св. 140	+143	+100	+50	+305	+160	+80	+770	+530	+460	+395	+250
до 160	+43	0	-50	+145	0	-80	+520	+280	+210	+145	0
Св. 160							+830	+560	+480		
до 180							+580	+310	+230		
Св. 180							+950	+630	+530		
до 200							+660	+340	+240		
Св. 200	+165	+115	+57	+355	+185	+92	+1030	+670		+460	+290
до 225	+50	0	-57	+170	0	-92	+740	+380	+260	+170	0
Св. 225							+1110	+710	+570		
до 250							+820	+420	+280		
Св. 250							+1240	+800	+620		
		+130		+400				+480		+510	
Св. 280	+56	0	-65	+190	0	-105	+1370			+190	0
до 315							+1050	+540	+330		
Св. 315							+1560		+720		
	+202	+140		+440			+1200			+570	
Св. 355	+62	0	-70	+210	0	-115	+1710			+210	0
до 400							+1350				
Св. 400							+1900				
до 450		+155		+480			+1500			+630	+400
Св. 450	+68	0	-77	+230	0	-125	+2050			+230	0
до 500			1		1	l	+1650	+840	400		

Приложение прил. 2 Продолжение табл. 2.2

Интервал		Пол	я доп	і усков (отверс	тий 12-го и 1	7-го квалите	тов
размеров,	B12	H12		<i>H</i> 13	<i>H</i> 14	<i>H</i> 15	H16	H17
MM		1	~				понения, мкм	
От 1	+240	+100		+140	+250	+400	+600	+1000
до 3	+140	0	-50	0	0	0	0	0
Св. 3	+260	+120	+60	+180	+300	+480	+750	+1200
до 6	+140	0	-60	0	0	0	0	0
Св. 6	+300	+150	+75	+220	+360	+580	+900	+1500
до 10	+150	0	-75	0	0	0	0	0
Св. 10	+330	+180	+90	+270	+430	+700	+1100	+1800
до 18	+150	0	-90	0	0	0	0	0
Св. 18	+370	+210	+105	+330	+520	+840	+1300	+2100
до 30	+160	0	-105	0	0	0	0	0
Св. 30	+420							
до 40	+170	+250	+125	+390	+620	+1000	+1600	+2500
Св. 40	+430	0	-125	0	0	0	0	0
до 50	+180							
Св. 50	+490							
до 65	+190	+300	+150	+460	+740	+1200	+1900	+3000
Св. 65	+500	0	-150	0	0	0	0	0
до 80	+200							
Св. 80	+570							
до 100	+220	+350	+175	+540	+870	+1400	+2200	+3500
Св. 100	+590	0	-175	0	0	0	0	0
до 120	+240							
Св. 120	+660							
до 140	+260							
Св. 140	+680	+400	+200	+630	+1000	+1600	+2500	+4000
до 160	+280	0	-200	0	0	0	0	0
Св. 160	+710							
до 180	+310							
Св. 180	+800							
до 200	+340							
Св. 200	+840	+460			+1150	+1850	+2900	+4600
до 225	+380	0	-230	0	0	0	0	0
Св. 225	+880							
до 250	+420							
Св. 250	+1000							
до 280	+480	+520			+1300	+2100	+3200	+5200
Св. 280	+1060	0	-260	0	0	0	0	0
до 315	+540							

Окончание прил. 2 Окончание табл. 2.2

Св. 315	+1170							
до 355	+600	+570	+285	+890	+1400	+2300	+3600	+5700
Св. 355	+1250	0	-285	0	0	0	0	0
до 400	+680							
Св. 400	+1390							
до 450	+760	+630	+315	+970	+1550	+2500	+4000	+6300
Св. 450	$+1\overline{470}$	0	-315	0	0	0	0	0
до 500	+840							

Приложение 3 Допуски и отклонения полей допусков калибров (по ГОСТ 24853–81)

Section Sec			'	Допуск						
Pasheps II Допуски, MKM Pasheps II	еть ков ий	Обозначе-	_						0 0	
Pasheps II Допуски, MKM Pasheps II	лит гусн				в. 6					
Pasheps II Допуски, MKM Pasheps II	_вал цоп изд		T.	o R	o Ħ	C.	5 H	E E	5 1	калиб-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Α,	допусков		pa						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	1,5	1,5	2	2	2,5	2,5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Y	1	1	1	1,5	1,5	2	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		α , α_1	0	0	0	0	0	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6		1,5	2	2		3	3,5	4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0		1,5	1,5	1,5	2	3	3	3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1,2	1,5	1,5	2	2,5	2,5	3	<i>IT</i> 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	2,5	2,5	3	4	4	5	IT2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0,8	1	1	1,2	1,5	1,5	2	<i>IT</i> 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Z, Z_1	1,5	2	2	2,5	3	3,5	4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1,5	1,5			3			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	α, α_1	0	0			0		0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	/		2	2,5	2,5	3	4	4	5	IT2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	_		2	2,5	2,5		IT1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0,8	1		1,2			2	IT1
$ 8 \begin{array}{ c c c c c c c c c c c c c c c c c c c$				3	3	4	5	6	7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						4	4		5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0		0	0		0	0	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8		2	2,5	2,5	3	4	4	5	IT2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		H_1	3			5	6	7	8	IT3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1,2	1,5	1,5	2	2,5	2,5	3	IT1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5	6	7	8	9	11	13	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	0	0	0	0	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		α, α_1	0	0	0	0	0	0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9		2	2,5	2,5	3	4	4	5	IT2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		H_1	3			5	6	7	8	IT3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1,2	1,5	1,5	2	2,5	2,5	3	IT1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				6	i	8		11	13	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					0		0			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.0									
H_1 3 4 4 5 6 7 8 IT3	10									IT2
			3				6			
$H_s^*, H_p = 1,2 = 1,5 = 1,5 = 2 = 2,5 = 2,5 = 3 = IT1$		H_s*, H_p	1,2	1,5	1,5	2	2,5	2,5	3	<i>IT</i> 1

Окончание прил. 3

			размеров.	меров, мм				
Квалитеты допусков изделий	Обозначение размеров и допусков	св. 80 до 120	св. 120 до 180	св. 180	св. 250 до 315	св. 315 до 400	св. 400 до 500	Допуск на форму калибра
			Pa ₃	меры и д	опуски, м	икм		
	Z	3	4	5	6	7	8	
	Y	3	3	4	5	6	7 5	
	α, α_1	0	0	2	3	4	5	
6	Z_1	5	6	7	8	10	11	
U	Y_1	4	4	5	6	6	7	
	H, H_s	4	5	7	8	9	10	IT1
	H_1	6	8	10	12	13	15	IT2
	H_p	2,5	3,5	4,5	6	7	8	IT1
	Z, Z_1	5	6	7	8	10	11	
	Y, Y_1	4	4	6	7	8	9	
7	α, α_1	0	0	3	4	6	7	
/	H, H_1	6	8 5	10	12	13	15	IT2
	H_s	4	5	7	8	9	10	IT1
	H_p	2,5	3,5	4,5	6	7	8	IT1
	Z, Z_1	8	9	12	14	16	18	
	Y, Y_1	6	6	7	9	9	11	
0	α , α_1	0	0	4	6	7	9	
8	H	6	8	10	12	13	15	IT2
	H_1	10	12	14	16	18	20	IT3
	H_s^*, H_p	4	5	7	8	9	10	IT1
	Z, Z_1	15	18	21	24	28	32	
	Y, Y_1	0	0	0	0	0	0	
9	α , α_1	0	0	4	6	7	9	
9	H	6	8	10	12	13	15	IT2
	H_1	10	12	14	16	18	20	IT3
	H_s^*, H_p	4	5	7	8	9	10	IT1
	Z, Z_1	15	18	24	27	32	37	
	Y, Y_1	0	0	0	0	0	0	
1.0	α, α_1	0	0	7	9	11	14	
10	H	6	8	10	12	13	15	IT2
	H_1	10	12	14	16	18	20	IT3
	H_s^*, H_p	4	5	7	8	9	10	IT1
	Г			l .	1		l .	I.

Приложение 4

Зависимость квалитетов сопрягаемых с подшипником деталей от класса точности подшипников

Класс точности	Квалитет сопрягаемой с подшипником					
подшипника	детали					
качения	отверстий	валов				
0 и 6	7	6				
5 и 4	6	5				
2	5	4				

Приложение 5

Шероховатость по параметру *Ra* (мкм) для посадочных мест и опорных торцевых поверхностей (ГОСТ 3325–85)

Посадочная	Класс	Диаметр п	одшипника
поверхность	точности	До 80 мм	Св. 80 до 500 мм
	подшипника		
Вал	0	1,6	3,2
	6 и 5	0,8	1,6
	4	0,4	0,8
	2	0,2	0,4
Отверстия в	0	1,6	3,2
корпусе	6, 5, 4	0,8	1,6
	2	0,4	0,8
Опорные	0	3,2	3,2
торцы			
заплечиков	6, 5, 4	1,6	3,2
валов			
и корпусов	2	0,8	0,8

Приложение 6 Допуски формы посадочных поверхностей, мкм (ГОСТ 3325–85)

		Вал (ось	<u>,</u>)	Отверстия корпусов			
Интервалы	_	ск кругл		-	ск кругло		
номинальных		уск прос	•	допуск профиля			
диаметров	продо	льного с	ечения	продо	льного се	ечения	
d и D , мм		Классі	ы точнос	ти подши	ипников		
	0 и 6	5 и 4	2	0 и 6	5 и 4	2	
От 0,6 до 2,5	1,5	0,7	0,4	_	_	_	
Св. 2,5 до 3	1,5	0,7	0,4	2,5	1,0	0,5	
Св. 3 до 6	2,0	0,8	0,5	3,0	1,3	0,6	
Св. 6 до 10	2,5	1,0	0,5	4,0	1,5	0,8	
Св. 10 до 18	3,0	1,3	0,6	4,5	2,0	1,0	
Св. 18 до 30	3,5	1,5	0,8	5,0	2,0	1,0	
Св. 30 до 50	4,0	2,0	1,0	6,0	2,5	1,4	
Св. 50 до 80	5,0	2,0	1,0	7,5	3,0	1,6	
Св. 80 до 120	6,0	2,5	1,2	9,0	3,5	2,0	
Св. 120 до 180	6,0	3,0	1,5	10,0	4,0	2,2	
Св. 180 до 250	7,0	3,5	1,7	11,5	5,0	2,5	
Св. 250 до 315	8,0	4,0	_	13,0	5,3	3,0	

Приложение 7 Допуски торцевого биения заплечиков валов, мкм (ГОСТ 3325–85)

Интервалы		Классы то	очности по,	дшипникої	3
номинальных диаметров	0	6	5	4	2
d, MM					
От 1 до 3	10	6	3	2,0	1,2
Св. 3 до 6	12	8	4	2,5	1,5
Св. 6 до 10	15	9	4	2,5	1,5
Св. 10 до 18	18	11	5	3,0	2,0
Св. 18 до 30	21	13	6	4,0	2,5
Св. 30 до 50	25	16	7	4,0	2,5
Св. 50 до 80	30	19	8	5,0	3,0
Св. 80 до 120	35	22	10	6,0	4,0
Св. 120 до 180	40	25	12	8,0	5,0
Св. 180 до 250	46	29	14	10,0	7,0
Св. 250 до 315	52	32	16	1	_

Приложение 8 Допуски торцевого биения заплечиков отверстий корпусов, мкм (ГОСТ 3325–85)

Интервалы		Классы то	учности по,	дшипникої	3
номинальных					
диаметров	0	6	5	4	2
D, mm					
Св. 3 до 6	18	12	5	4	2,5
Св. 6 до 10	22	15	6	4	2,5
Св. 10 до 18	27	18	8	5	3,0
Св. 18 до 30	33	21	9	6	4,0
Св. 30 до 50	39	25	11	7	4,0
Св. 50 до 80	46	30	13	8	5,0
Св. 80 до 120	54	35	15	10	6,0
Св. 120 до 180	63	40	18	12	8,0
Св. 180 до 250	72	46	20	14	10,0
Св. 250 до 315	81	52	23	16	12,0

Приложение 9 Варианты посадок при местном виде нагружения колец подшипника

		1	подшини	11(4)	1			
	меры		Посадки					
диам	цочных иетров, мм	на вал	в корпус ста. чугуні		Типы подшипников			
СВ.	до	(00)	неразъемный	разъемный				
Hai	грузка с	покойна	я или с умеренн	ыми толчкам	и и вибрацией			
_	80	h	Н		Все типы,			
80	260	g, f	G	H	кроме			
260	500	C	D	Π	штампованных			
500	1600	f	Р		игольчатых			
		Нагр	узка с толчками	и вибрацией				
_	80	1			Все типы,			
80	260	h	Js		штампованных			
260	500			Js	игольчатых и роликовых			
		g	H		конических			
500	1600				двурядных			
_	120	h		_	Роликовые			
120	1600	g	H	Js	конические			
		O			двурядные			

Приложение 10 Варианты посадок при циркуляционном виде нагружения колец подшипника

Диаметр, мм Допускаемые значения P_R , $H/$ мм									
5 1	нее кольцо		ПОС	садки на вал					
свыше	до	js	k	m	n				
18	80	До 300	300-1400	1400-1600	1600-3000				
80	180	До 600	600-2000	2000-2500	2500-4000				
180	360	До 700	700-3000	3000-3500	3500-6000				
360	630	До 900	900-3500	3500-4500	4500-8000				
1 2	ое кольцо	посадки в корпус							
свыше	до	K	M	N	P				
50	180	До 800	800-1000	1000-1300	1300-2500				
180	360	До 1000	1000-1500	1500-2000	2000-3300				
360	630	До 1200	1200-2000	1200-2600	2600-4000				
630	1600	До 1600	1600-2500	2500-3500	3500-5500				

Приложение 11 Подшипники шариковые и роликовые радиальные и шариковые радиально-упорные (по ГОСТ 520–2002) Класс точности 0

Кольца внутренние

					_		сры,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
d , mm Δ_{dmp}						<i>V_{dp}</i> Сери	Я					. :	Δ_{Bs}	у ИЖН.	$V_{Bs,}$
d, mm	Δ_c	dmp	Δ	Λ_{ds}	0, 8, 9	амет 1, 7	2(5), 3(6), 4	V_{dmp}	K_{id}	S_d	S_{ia}	Верхн.	Под-	Сдвоенный подшип- ник	i 1
	верхн.	нижн.	верхн.	нижн.				не б	олее					IIIIK	
От 0,6 до 2,5		-8	+1	-9	10	8	6	6	10	20	24		-40	_	12
Св. 2,5 до 10		-8	+2	-10	10	8	6	6	10	20	24		-120	-250	15
,, 10 ,, 18 ,,		-8	+3	-11	10	8	6	6	10	20	24		-120	-250	20
, 18 , 30 ,		-10	+3	-13	13	10	8	8	13	20	24		-120	-250	20
,, 30 ,, 50 ,,		-12	+3	-15	15	12	9	9	15	20	24		-120	-250	20
,, 50 ,, 80 ,,	0	-15	+4	-19	19	19	11	11	20	25	30	0	-150	-380	25
,, 80 ,, 120 ,,	0	-20	+5	-25	25	25	15	15	25	25	30	0	-200	-380	25
,, 120 ,, 180 ,,		-25	+6	-31	31	31	19	19	30	30	36		-250	-500	30
,, 180 ,, 250 ,,		-30	+8	-38	38	38	23	23	40	30	36		-300	-500	30
,, 250 ,, 315 ,,		-35	+9	-44	44	44	26	26	50	35	42		-350	-500	35
,, 315 ,, 400 ,,		-40	+10	-50	50	50	30	30	60	40	48		-400	-630	40
,, 400 ,, 500 ,,		-45	+12	-57	56	56	34	34	65	45	54		-450	_	45

Класс точности 0 Кольца наружные Размеры, мкм

						1 43	wicpbi, N	11(1)1					
	Δ_{Dmp}					V_{Dp}							
	Δ_{Dmp}				(Эткры	гый	Закрытый					
					П	одшиг	іник	подшипник					V_{Cs} ,
D, mm	Δ_L) тр	Δ_{I}	DS		Сери	ия диаме	тров	V_{Dmp}	K_{ea}	S_{ea}	Δ_{Cs}	v _{Cs} ,
2, 11111					0,	1	2(5),	2(5),					более
					8,	1, 7	3(6),	3(6),					
					9	,	4	4					
	верхн.	нижн.	верхн.	нижн.				не более				верхн. нижн.	
От 2,5 до 6		-8	+1	-9	10	8	6	10	6	15	40		
Св. 6 до 18		-8	+2	-10	10	8	6	10	6	15	40		
,, 18 ,, 30 ,,		-9	+2	-11	12	9	7	12	7	15	40		
,, 30 ,, 50 ,,		-11	+3	-14	14	11	8	16	8	20	40		
,, 50 ,, 80 ,,		-13	+4	-17	16	13	10	20	10	25	40	Равны Δ_{Bs}	и V_{Bs}
,, 80 ,, 120 ,,	0	-15	+5	-20	19	19	11	26	11	35	45	того же поді	шипника
,, 120 ,, 180 ,,		-18	+6	-24	23	23	14	30	14	40	50	соответст	венно
,, 180 ,, 250 ,,		-25	+7	-32	31	31	19	38	19	45	60		
,, 250 ,, 315 ,,		-30	+8	-38	38	38	23	_	23	50	70		
,, 315 ,, 400 ,,		-35	+9	-44	44	44	26	_	26	60	80		
,, 400 ,, 500 ,,		-40	+10	-50	50	50	30	_	30	70	90		

Класс точности 6 Кольца внутренние

	d , мм Δ_{dmp}					V_{dp}	,,						Δ_{Bs}		
					Сери	я диам	етров						Низ	жн.	
d, mm	верхн. нижн		Δ	eds	0, 8, 9	1, 7	2(5), 3(6), 4	V_{dmp}	K_{id}	S_d	S_{ia}	Верхн.	Под- шип- ник	Сдво- енный под- шип-	V_{Bs} , не более
	верхн.	нижн.	верхн.				1	не бо	лее	Т	T	ı		ник	
От 0,6 до 2,5		– 7	+1	-8	9	7	5	5	5	10	12		-40	_	10
Св. 2,5 до 10		– 7	+1	-8	9	7	5	5	6	10	12		-120	-250	10
,, 10 ,, 18 ,,		– 7	+1	-8	9	7	5	5	7	10	12		-120	-250	10
,, 18 ,, 30 ,,		-8	+1	-9	10	8	6	6	8	10	12		-120	-250	10
,, 30 ,, 50 ,,		-10	+1	-11	13	10	8	8	10	10	12		-120	-250	10
,, 50 ,, 80 ,,	0	-12	+2	-14	15	15	9	9	10	12	15	0	-150	-380	12
,, 80 ,, 120 ,,	U	-15	+3	-18	19	19	11	11	13	12	15		-200	-380	12
,, 120 ,, 180 ,,		-18	+3	-21	23	23	14	14	18	15	18		-250	-500	15
,, 180 ,, 250 ,,		-22	+4	-26	28	28	17	17	20	15	18		-300	-500	15
,, 250 ,, 315 ,,		-25	+5	-30	31	31	19	19	25	17	21		-350	-500	17
,, 315 ,, 400 ,,		-30	+5	-35	38	38	23	23	30	20	24		-400	-630	20
,, 400 ,, 500 ,,		-35	+6	-41	44	44	26	26	35	22	27		-450	_	22

Класс точности 6 Кольца наружные Размеры, мкм

	1		1			- 1	DI, 1111K		1		ı — —	1	1	
							V_{L}) p						
					Oı	гкры	гый	Закрытый						
					ПОД	дшиг	ІНИК	подшипник	T 7	77	a	T 7		
D, mm	D , мм Δ_{Dn}		Δ_{DS}		Серия диаметр			аметров	V_{Dmp}	K_{ea}	S_{ea}	V_{Cs}	Δ	Cs
					0,	1	2(5),	1, 7,						
					8,	1, 7	3(6),	2(5), 3(6),						
					9	/	4	4						
	верхн.	нжин.	верхн.	нижн.				не боле	ee				верхн.	нижн.
От 2,5 до 6		– 7	+1	-8	9	7	5	9	5	8	20	12		
Св. 6 до 18		– 7	+1	-8	9	7	5	9	5	8	20	15		
,, 18 ,, 30 ,,		-8	+1	-9	10	8	6	10	6	9	20	20		
,, 30 ,, 50 ,,		-9	+2	-11	11	9	7	13	7	10	20	20		
,, 50 ,, 80 ,,		-11	+2	-13	14	11	8	16	8	13	20	20	Равно Д	Δ_{Bs} того
,, 80 ,, 120 ,,	0	-13	+2	-15	16	16	10	20	10	18	22	25		æ
,, 120 ,, 180 ,,		-15	+3	-18	19	19	11	25	11	20	25	25	подши	пника
,, 180 ,, 250 ,,		-18	+3	-21	23	23	14	30	14	23	30	30		
,, 250 ,, 315 ,,		-20	+4	-24	25	25	15	_	15	25	35	30		
,, 315 ,, 400 ,,		-25	+4	-29	31	31	19	_	19	30	40	35		
,, 400 ,, 500 ,,		-28	+5	-33	35	35	21	_	21	35	45	40		

Класс точности 5 Кольца внутренние

						inepbi ;	,							
					V_d	p						Δ_{I}	3s	
					Сер	ИЯ						L	Іижн.	
	Λ		Λ		диаме	тров	V	V	$ S_d $	C	<u>.</u>	1.	ижн.	$V_{Bs,}$
d, mm	Δ_a	lmp	Δ	ds	0,	1, 7,	V_{dmp}	K_{id}	\mathcal{S}_d	S_{ia}	Верхн.		Сдвоенный	<i>у вs</i> ,
					8,	2(5),					Be	Под-	комплект-	более
					9	3(6), 4						шип-	ный	
		1										ник	подшип-	
	верхн.	нижн.	верхн.	нижн.		ı	не б	олее			1		ник	
От 0,6 до 2,5		-5		-5	5	4	3	4	7	7		-40	-250	5
Св. 2,5 до 10		-5		-5	5	4	3	4	7	7		-40	-250	5
,, 10 ,, 18 ,,		-5		-5	5	4	3	4	7	7		-80	-250	5
,, 18 ,, 30 ,,		-6		-6	6	5	3	4	8	8		-120	-250	5
,, 30 ,, 50 ,,		-8		-8	8	6	4	5	8	8		-120	-250	5
,, 50 ,, 80 ,,	0	-9	0	-9	9	7	5	5	8	8	0	-150	-250	6
,, 80 ,, 120 ,,		-10		-10	10	8	5	6	9	9		-200	-380	7
,, 120 ,, 180 ,,		-13		-13	13	10	7	8	10	10		-250	-380	8
,, 180 ,, 250 ,,		-15		-15	15	12	8	10	11	13		-300	-500	10
,, 250 ,, 315 ,,		-18		-18	18	14	9	13	13	15		-350	-500	13
,, 315 ,, 400 ,,		-23		-23	23	18	12	15	15	20		-400	-630	15

Класс точности 5 Кольца наружные Размеры, мкм

						Topbi, Miki						
D, mm	Δ_{L}	Э тр	Δ_{I}	DS	V_{Dp} Серия диаметров		V_{Dmp}	K_{ea}	S_D	S_{ea}	Δ_{Cs}	$V_{Cs,}$
					0, 8, 9	1, 7, 2(5), 3(6), 4						не более
	верхн.	нижн.	верхн.	нижн.		I	не более				верхн. нижн.	
От 2,5 до 6 вкл.		-5		-5	5	4	3	5	8	8		5
Св. 6 до 18 вкл.		-5		-5	5	4	3	5	8	8		5
,, 18 ,, 30 ,,		-6		-6	6	5	3	6	8	8		5
,, 30 ,, 50 ,,		- 7		- 7	7	5	4	7	8	8		5
,, 50 ,, 80 ,,		-9		-9	9	7	5	8	8	10	Равно Δ_{Bs}	6
,, 80 ,, 120 ,,	0	-10	0	-10	10	8	5	10	9	11	того же	8
,, 120 ,, 180 ,,		-11		-11	11	8	6	11	10	13	подшипни-	8
,, 180 ,, 250 ,,		-13		-13	13	10	7	13	10	14	Ka	8
,, 250 ,, 315 ,,		-15		-15	15	11	8	15	11	15		10
,, 315 ,, 400 ,,		-18		-18	18	14	9	18	13	18		11
,, 400 ,, 500 ,,		-20		-20	20	15	10	20	13	20		13

Класс точности 4 Кольца внутренние

						dp						$\Delta_{\underline{j}}$	Bs	
					-	рия етров						I	Нижн.	
d, mm	Δ_c	lmp	Δ	èds	0, 8, 9	1, 7, 2(5), 3(6), 4	V_{dmp}	K_{id}	S_d	S_{ia}	Верхн.	Под- шип- ник	Сдвоенный комплект- ный подшип- ник	$V_{Bs,}$ не более
	верхн.	нижн.	верхн.	нижн.			не б	олее						
От 0,6 до 2,5		-4		-4	4	3	2	2,5	3	3		-40	-250	2,5
Св. 2,5 до 10		-4		-4	4	3	2	2,5	3	3		-40	-250	2,5
,, 10 ,, 18 ,,		-4		-4	4	3	2	2,5	3	3		-80	-250	2,5
,, 18 ,, 30 ,,		-5		-5	5	4	2,5	3	4	4		-120	-250	2,5
,, 30 ,, 50 ,,	0	-6	0	-6	6	5	3	4	4	4	0	-120	-250	3
,, 50 ,, 80 ,,		– 7		- 7	7	5	3,5	4	5	5		-150	-250	4
,, 80 ,, 120 ,,		-8		-8	8	6	4	5	5	5		-200	-380	4
,, 120 ,, 180 ,,		-10		-10	10	8	5	6	6	7		-250	-380	5
,, 180 ,, 250 ,,		-12		-12	12	9	6	8	7	8		-300	-500	6

Класс точности 4 Кольца наружные

						owepbi, with							
					<i>V</i>	Dp							
D, mm	Δ_{Dmp}		Δ_{I}	DS	Серия ди	иаметров	V_{Dmp}	K_{ea}	S_D	S_{ea}	Δ	Cs	V_{Cs} , He
					0,	1,							более
					8,	7, 2(5),							
				<u> </u>	9	3(6), 4							-
	верхн.	нижн.	верхн.	нижн.		H	не более				верхн.	нижн.	
От 2,5 до 6		-4		- 4	4	3	2	3	4	5			2,5
Св. 6 до 18		-4		-4	4	3	2	3	4	5			2,5
,, 18 ,, 30 ,,		- 5		-5	5	4	2,5	4	4	5			2,5
,, 30 ,, 50 ,,		-6		-6	6	5	3	5	4	5			2,5
,, 50 ,, 80 ,,	0	– 7	0	- 7	7	5	3,5	5	4	5	Равно		3
,, 80 ,, 120 ,,	U	-8	0	-8	8	6	4	6	5	6	ТОГО		4
,, 120 ,, 180 ,,		-9		_9	9	7	5	7	5	7	подши	шника	5
" 180 " 250 "		-10		-10	10	8	5	8	5	8			5
" 250 " 315 "		-11		-11	11	8	6	10	7	10			7
,, 315 ,, 400 ,,		-13		-13	13	10	7	11	8	10			7

Приложение 12 Диаметр резьбы (по ГОСТ 24705–81)

I P	Диаметрі (болт и	-	I P		ы резьбы ı гайка)
Шаг резьбы	средний	внутренний	Шаг резьбы	средний	внутренний
 I pe3	диаметр	диаметр	De3	диаметр	диаметр
	d_2,D_2	d_1,D_1		d_2, D_2	d_1, D_1
0,075	d-1+0,951	d-1+0,919	0,7	d-1+0,545	d-1+0,242
0,08	d - 1 + 0,948	d-1+0,913	0,75	d-1+0,513	d - 1 + 0.188
0,09	d - 1 + 0,942	d-1+0,903	0,8	d - 1 + 0,480	d - 1 + 0.134
0,1	d - 1 + 0.935	d-1+0,892	1	d - 1 + 0.350	d - 2 + 0.918
0,125	d - 1 + 0.919	d-1+0.865	1,25	d - 1 + 0,188	d - 2 + 0,647
0,15	d - 1 + 0,903	d - 1 + 0.838	1,5	d-1+0,026	d - 2 + 0.376
0,175	d - 1 + 0.886	d-1+0.811	1,75	d - 2 + 0,863	d - 2 + 0,106
0,2	d - 1 + 0.870	d - 1 + 0,783	2	d - 2 + 0,701	d - 3 + 0.835
0,225	d - 1 + 0.854	d - 1 + 0,756	2,5	d-2+0,376	d - 3 + 0,294
0,25	d - 1 + 0.838	d - 1 + 0,730	3	d-2+0,051	d - 4 + 0,752
0,3	d - 1 + 0.805	d-1+0,675	3,5	d - 3 + 0,727	d - 4 + 0.211
0,35	d - 1 + 0,773	d-1+0,621	4	d - 3 + 0,402	d - 5 + 0,670
0,4	d - 1 + 0,740	d-1+0,567	4,5	d - 3 + 0.077	d - 5 + 0,129
0,45	d - 1 + 0,708	d - 1 + 0,513	5	d-4+0,752	d - 6 + 0,587
0,5	d - 1 + 0,675	d - 1 + 0,459	5,5	d-4+0,428	d - 6 + 0.046
0,6	d - 1 + 0,610	d - 1 + 0.350	6	$d - 4 + 0{,}103$	d - 7 + 0,505
Приме	п пасчета: Р	езьба М16. ш	ıaг Р	= 2 MM. $d(1)$	(0) = 16 MM.

Пример расчета: Резьба M16, шаг P=2 мм, d(D)=16 мм, $d_2(D_2)=14,701$ мм, $d_1(D_1)=13,835$ мм.

Приложение 13 Значения единиц допуска для размеров до 500 мм

	Site is in equiling doily site daily passive por do 200 inin											
Основные интервалы номиналь-		Интервалы свыше – до										
ных размеров, мм	3	3 6	6 10	10 18	18 30	30 50	50 80	80 120	120 180	180 250	250 315	315 400
Значение <i>i</i> , мкм	0,55	0,73	0,90	1,08	1,31	1,56	1,86	2,17	2,52	2,90	3,23	3,54

Приложение 14 Допуски для размеров до 500 мм (по ГОСТ 25346–89)

нальные размеры, мм Об и и и и и и и и и и и и и и и и и и и	Доп	Квалитеты									
размеры, мм	Номи-	01	0	1	2	3	4	5	6	7	8
MM Ной Ию Ий Иг Иг Из Из Ин Иг Иг Иг Иопуски, мкм До 3 0,3 0,5 0,8 1,2 2 3 4 6 10 14 Св. 3 до 6 0,4 0,6 1 1,5 2,5 4 5 8 12 18 Св. 6 до 10 0,4 0,6 1 1,5 2,5 4 6 9 15 22 Св. 10 до 18 0,5 0,8 1,2 2 3 5 8 11 18 27 Св. 18 до 30 до 50 0,6 1 1,5 2,5 4 6 9 13 21 33 Св. 30 до 50 0,6 1 1,5 2,5 4 6 9 13 21 33 Св. 30 до 80 0,6 1 1,5 2,5 4 7 11 16 25 39 Св. 80 до 80 1,2 2 3 5 8 13 19					Обоз	начени	ие допу	усков			
Долуски, мкм До 3	-	<i>IT</i> 01	IT0	IT1	IT2	IT3	IT4	IT5	IT6	IT7	IT8
Св. 3 до 6 0,4 0,6 1 1,5 2,5 4 5 8 12 18 Св. 6 до 10 0,4 0,6 1 1,5 2,5 4 6 9 15 22 Св. 10 до 18 0,5 0,8 1,2 2 3 5 8 11 18 27 Св. 18 до 30 0,6 1 1,5 2,5 4 6 9 13 21 33 Св. 30 до 50 0,6 1 1,5 2,5 4 7 11 16 25 39 Св. 50 до 80 0,8 1,2 2 3 5 8 13 19 30 46 Св. 50 до 80 0,8 1,2 2 3 5 8 13 19 30 46 Св. 80 до 120 1 1,5 2,5 4 6 10 15 22 35 54 Св. 180 до 250 2	171171		T	Γ	, ,	Д опусн	ки, мкл	1	ı	ı	T
ДО 6 0,4 0,6 1 1,5 2,5 4 5 8 12 18 СВ. 6 ДО 10 0,4 0,6 1 1,5 2,5 4 6 9 15 22 СВ. 10 ДО 18 0,5 0,8 1,2 2 3 5 8 11 18 27 СВ. 18 ДО 30 0,6 1 1,5 2,5 4 6 9 13 21 33 СВ. 30 ДО 50 0,6 1 1,5 2,5 4 7 11 16 25 39 СВ. 50 ДО 80 0,8 1,2 2 3 5 8 13 19 30 46 СВ. 80 ДО 80 1 1,5 2,5 4 6 10 15 22 35 54 СВ. 120 ДО 10 1,2 2 3,5 5 8 12 18 25 40 63 СВ. 180 ДО 250 2 3 4,5 7	До 3	0,3	0,5	0,8	1,2	2	3	4	6	10	14
ДО 10 0,4 0,6 1 1,5 2,5 4 6 9 15 22 СВ. 10 дО 18 0,5 0,8 1,2 2 3 5 8 11 18 27 СВ. 18 дО 30 0,6 1 1,5 2,5 4 6 9 13 21 33 СВ. 30 дО 50 0,6 1 1,5 2,5 4 7 11 16 25 39 СВ. 50 дО 80 0,8 1,2 2 3 5 8 13 19 30 46 СВ. 80 дО 120 1 1,5 2,5 4 6 10 15 22 35 54 СВ. 120 дО 180 1,2 2 3,5 5 8 12 18 25 40 63 Св. 180 дО 250 2 3 4,5 7 10 14 20 29 46 72 Св. 250 дО 315 2,5 4 6 8 12 16 23 32 52 81 Св. 315 дО 400 3 5 7 9 13 18 25 36 57 89 Св. 400 дО 500 4<		0,4	0,6	1	1,5	2,5	4	5	8	12	18
ДО 18 0,5 0,8 1,2 2 3 5 8 11 18 27 СВ. 18 дО 30 0,6 1 1,5 2,5 4 6 9 13 21 33 СВ. 30 дО 50 0,6 1 1,5 2,5 4 7 11 16 25 39 СВ. 50 дО 80 0,8 1,2 2 3 5 8 13 19 30 46 СВ. 80 дО 120 1 1,5 2,5 4 6 10 15 22 35 54 СВ. 120 дО 180 1,2 2 3,5 5 8 12 18 25 40 63 СВ. 180 дО 250 2 3 4,5 7 10 14 20 29 46 72 Св. 250 дО 315 2,5 4 6 8 12 16 23 32 52 81 Св. 315 дО 400 3 5 7 9 13 18 25 36 57 89 Св. 400 дО 500 4 6 8 10 15 20 27 40 63 97		0,4	0,6	1	1,5	2,5	4	6	9	15	22
ДО 30 0,6 1 1,5 2,5 4 6 9 13 21 33 СВ. 30 дО 50 0,6 1 1,5 2,5 4 7 11 16 25 39 СВ. 50 дО 80 0,8 1,2 2 3 5 8 13 19 30 46 СВ. 80 дО 120 1 1,5 2,5 4 6 10 15 22 35 54 СВ. 120 дО 180 1,2 2 3,5 5 8 12 18 25 40 63 СВ. 180 дО 250 2 3 4,5 7 10 14 20 29 46 72 СВ. 250 дО 315 2,5 4 6 8 12 16 23 32 52 81 СВ. 315 дО 400 3 5 7 9 13 18 25 36 57 89 Св. 400 дО 500 4 6 8 10 15 20 27 40 63 97		0,5	0,8	1,2	2	3	5	8	11	18	27
ДО 50 0,6 1 1,5 2,5 4 7 11 16 25 39 СВ. 50 дО 80 0,8 1,2 2 3 5 8 13 19 30 46 СВ. 80 дО 120 1 1,5 2,5 4 6 10 15 22 35 54 СВ. 120 дО 180 1,2 2 3,5 5 8 12 18 25 40 63 СВ. 180 дО 250 2 3 4,5 7 10 14 20 29 46 72 СВ. 250 дО 315 2,5 4 6 8 12 16 23 32 52 81 СВ. 315 дО 400 3 5 7 9 13 18 25 36 57 89 Св. 400 дО 500 4 6 8 10 15 20 27 40 63 97		0,6	1	1,5	2,5	4	6	9	13	21	33
ДО 80 0,8 1,2 2 3 5 8 13 19 30 46 СВ. 80 дО 120 1 1,5 2,5 4 6 10 15 22 35 54 СВ. 120 дО 180 1,2 2 3,5 5 8 12 18 25 40 63 СВ. 180 дО 250 2 3 4,5 7 10 14 20 29 46 72 СВ. 250 дО 315 2,5 4 6 8 12 16 23 32 52 81 СВ. 315 дО 400 3 5 7 9 13 18 25 36 57 89 Св. 400 дО 500 4 6 8 10 15 20 27 40 63 97		0,6	1	1,5	2,5	4	7	11	16	25	39
До 120 1 1,5 2,5 4 6 10 15 22 35 54 Св. 120 до 180 1,2 2 3,5 5 8 12 18 25 40 63 Св. 180 до 250 2 3 4,5 7 10 14 20 29 46 72 Св. 250 до 315 2,5 4 6 8 12 16 23 32 52 81 Св. 315 до 400 3 5 7 9 13 18 25 36 57 89 Св. 400 до 500 4 6 8 10 15 20 27 40 63 97		0,8	1,2	2	3	5	8	13	19	30	46
до 180 1,2 2 3,5 5 8 12 18 25 40 63 Св. 180 до 250 2 3 4,5 7 10 14 20 29 46 72 Св. 250 до 315 2,5 4 6 8 12 16 23 32 52 81 Св. 315 до 400 3 5 7 9 13 18 25 36 57 89 Св. 400 до 500 4 6 8 10 15 20 27 40 63 97		1	1,5	2,5	4	6	10	15	22	35	54
до 250 2 3 4,5 7 10 14 20 29 46 72 Св. 250 до 315 2,5 4 6 8 12 16 23 32 52 81 Св. 315 до 400 3 5 7 9 13 18 25 36 57 89 Св. 400 до 500 4 6 8 10 15 20 27 40 63 97		1,2	2	3,5	5	8	12	18	25	40	63
До 315 2,5 4 6 8 12 16 23 32 52 81 Св. 315 до 400 3 5 7 9 13 18 25 36 57 89 Св. 400 до 500 4 6 8 10 15 20 27 40 63 97		2	3	4,5	7	10	14	20	29	46	72
до 400 3 5 7 9 13 18 25 36 57 89 Св. 400 до 500 4 6 8 10 15 20 27 40 63 97		2,5	4	6	8	12	16	23	32	52	81
до 500 4 6 8 10 15 20 27 40 63 97		3	5	7	9	13	18	25	36	57	89
IC		4	6	8	10	15	20	27	40	63	97
Количество единиц допуска в допуске данного квалитета	Колич	нество	един	иц до	пуска	в дог	туске	данно	ого кв	алите	та
											25

Продолжение прил. 14

TT	Квалитеты											
Номи-	9	10	11	12	13	14	15	16	17	18		
нальные размеры,				Обо	значе	ние до	пусков					
мм	<i>IT</i> 9	<i>IT</i> 10	<i>IT</i> 11	<i>IT</i> 12	<i>IT</i> 13	<i>IT</i> 14	<i>IT</i> 15	<i>IT</i> 16	<i>IT</i> 17	<i>IT</i> 18		
141141	Доп	уски,	МКМ		Допуски, мм							
До 3	25	40	60	0,1	0,14	0,25	0,4	0,6	1,0	1,4		
Св. 3 до 6	30	48	75	0,12	0,18	0,3	0,48	0,75	1,2	1,8		
Св. 6 до 10	36	58	90	0,15	0,22	0,36	0,58	0,9	1,5	2,2		
Св. 10 до 18	43	70	110	0,18	0,27	0,43	0,7	1,1	1,8	2,7		
Св. 18 до 30	52	84	130	0,21	0,33	0,52	0,84	1,3	2,1	3,3		
Св. 30 до 50	62	100	160	0,25	0,39	0,62	1,0	1,6	2,5	3,9		
Св. 50 до 80	74	120	190	0,3	0,46	0,74	1,2	1,9	3,0	4,6		
Св. 80 до 120	87	140	220	0,35	0,54	0,87	1,4	2,2	3,5	5,4		
Св. 120 до 180	100	160	250	0,4	0,63	1,0	1,6	2,5	4,0	6,3		
Св. 180 до 250	115	185	290	0,46	0,72	1,15	1,85	2,9	4,6	7,2		
Св. 250 до 315	130	210	320	0,52	0,81	1,3	2,1	3,2	5,2	8,1		
Св. 315 до 400	140	230	360	0,57	0,89	1,4	2,3	3,6	5,7	8,9		
Св. 400 до 500	155	250	400	0,63	0,97	1,55	2,5	4,0	6,3	9,7		
К	оличе	ство е	диниц	допусн	са в до	пуске	данног	о квалі	итета			
a_m	40	64	100	160	250	400	640	1000	1600	2500		

Приложение 15

Выписка из ГОСТ 1139-80

Таблица 15.1

Центрирование по внутреннему диаметру

]	Вид	Į	,	тътр			I	Толя	допу			1 3					
соед	цин	ения		Подвижное соединение								Неподвижное соединение					
	d	Втулка	Н8		Н7						<i>H</i> 7						
цка		Вал	e8		f7	g6 h7			h7	h7	j_s	$6; j_s$	7	n6			
Посадка	b	Втулка	D9; F10	D9; F10	D9	F8	D9; F10	F8	D9; F10	H8	F8; F10	D9	H8	F8; F10	Н8		
		Вал	e8; e9	f9; e8	h9	f8; f7; h7	f8; h9	f7; h7	f8; h9	h7; h8	h7; j _s 7; k7	<i>k</i> 7	j_s 7	h7; j _s 7	j_s 7		

Таблица 15.2

Центрирование по наружному диаметру

				дептрирование не наружнему днаметру									
	Вид			Поля допусков									
coe	дине	ния		Подвижное соединение Неподвижное соединени									
	D	Втулка	H8			Н	7			<i>H</i> 7			
цка		Вал	e8	f7			g	g6 h7		j_s 6	n6		
Посадка	b	Втулка	F8	D9; F8	F8	D9	D9; F8	F8	D9; F8	D9; F8	D9; F8		
		Вал	e8	e8; d9; h9	f7; f8; h8	f7; h8; h9	f7; h9	h8	f7	h8; j _s 7	h8; j _s 7		

Продолжение прил. 15 Таблица 15.3

Центрирование по боковым сторонам зубьев

	Вид			Поля допусков						
coe	соединения Подвижное соединение				Неподвижное соединение					
осадка	b	Втулка	D9; F8; F10	D9; F8; F10	D9; F8	D9; F10				
ПС		Вал	e8; f8; d9; h9	d9; f8; h9; e9	j_s 7	k7				

Таблица 15.4

Посадки для нецентрирующих поверхностей

Нецентрирующий	Вид	опуска	
диаметр	центрирования	Вал	Втулка
d	Π о D или b	_	<i>H</i> 11
D	Π о d или b	<i>a</i> 11	H12

Диаметр d не менее диаметра d_1 .

Таблица 15.5

Размеры легкой серии, мм

r,
не
лее
),2
),2
),2
),3
),3
),3
),3
),5
),5
),5
),5
),5
),5
),5
),5

Продолжение прил. 15 Таблица 15.6

Размеры средней серии, мм

	Число		•	ороди	d_1 ,	a,	C	,	r,
$z \times d \times D$	зубьев	d	D	b	не	не	помин	пред.	не
	z				менее	менее	номин.	откл.	более
6×11×14	6	11	14	3,0	9,9	_	0,3	+0,2	0,2
6×13×16	6	13	16	3,5	12,0	_	0,3	+0,2	0,2
6×16×20	6	16	20	4,0	14,5	_	0,3	+0,2	0,2
6×18×22	6	18	22	5,0	16,7	_	0,3	+0,2	0,2
6×21×25	6	21	25	5,0	19,5	1,95	0,3	+0,2	0,2
6×23×28	6	23	28	6,0	21,3	1,34	0,3	+0,2	0,2
6×26×32	6	26	32	6,0	23,4	1,65	0,4	+0,2	0,3
6×28×34	6	28	34	7,0	25,9	1,70	0,4	+0,2	0,3
8×32×38	8	32	38	6,0	29,4	_	0,4	+0,2	0,3
8×36×42	8	36	42	7,0	33,5	1,02	0,4	+0,2	0,3
8×42×48	8	42	48	8,0	39,5	2,57	0,4	+0,2	0,3
8×46×54	8	46	54	9,0	42,8	_	0,5	+0,3	0,5
8×52×60	8	52	60	10,0	48,7	2,44	0,5	+0,3	0,5
8×56×65	8	56	65	10,0	52,2	2,50	0,5	+0,3	0,5
8×62×72	8	62	72	12,0	57,8	2,40	0,5	+0,3	0,5

Таблица 15.7

Размеры тяжелой серии, мм

		1 u	меры	IMCHON	серии, мк	/1		
	Число				d_1 ,	(2	r,
$z \times d \times D$	зубьев	d	D	b	не менее	помии	пред.	не
	z				нс менес	номин.	ОТКЛ.	более
10×16×20	10	16	20	2,5	14,1	0,3	+0,2	0,2
10×18×23	10	18	23	3,0	15,6	0,3	+0,2	0,2
10×21×26	10	21	26	3,0	18,5	0,3	+0,2	0,2
10×23×29	10	23	29	4,0	20,3	0,3	+0,2	0,2
10×26×32	10	26	32	4,0	23,0	0,4	+0,2	0,3
10×28×35	10	28	35	4,0	24,4	0,4	+0,2	0,3
10×32×40	10	32	40	5,0	28,0	0,4	+0,2	0,3
10×36×45	10	36	45	5,0	31,3	0,4	+0,2	0,3
10×42×52	10	42	52	6,0	36,9	0,4	+0,2	0,3
10×46×56	10	46	56	7,0	40,9	0,5	+0,3	0,5
16×52×60	16	52	60	5,0	47,0	0,5	+0,3	0,5
16×56×65	16	56	65	5,0	50,6	0,5	+0,3	0,5
16×62×72	16	62	72	6,0	56,1	0,5	+0,3	0,5
16×72×82	16	72	82	7,0	65,9	0,5	+0,3	0,5

Приложение 16 Параметры шпоночного соединения (по ГОСТ 23360–78)

		1	1		,	шпоночи Ш		,	,			
				Ширин	a b			Глуб	бина		Рад	иус
Диаметр вала	Сечение шпонки <i>b</i> × <i>h</i>	Свободное соединение		· · ·		Вал	t_1	Втул	ка t_2	r_1 или	гления фаска 45°	
d	<i>0</i> ^ <i>n</i>	Вал (<i>H</i>9)	Втулка (D10)	Вал (N9)	Втулка (J _s 9)	Вал и втулка (<i>P</i>9)	номин.	пред. откл.	номин.	пред.	не более	не менее
От 6 до 8	2×2	+0,025	+0,060	-0,004	+0,012	-0,006	1,2		1,0			
Св. 6 до 8	3×3	0	+0,020	-0,029	-0,012	-0,031	1,8	+0,1	1,4	+0,1	0,16	0,08
Св. 10 до 12	4×4	+0,030	+0,078	0	+0,015	-0,012	2,5	0	1,8	0		
» 12 » 17	5×5	0 +0,030	+0,078	-0,030	-0.015	-0,012 -0,042	3,0		2,3			
» 17 » 22	6×6	U	+0,030	-0,030	-0,013	-0,042	3,5		2,8		0,25	0,16
Св. 22 до 30	8×7	+0,036	+0,098	0	+0,018	-0,015	4,0		3,3			
» 30 » 38	10×8	0	+0,040	-0,036	-0,018	-0,051	5,0		3,3			
Св. 38 до 44	12×8						5,0		3,3			
» 44 » 50	14×9	+0,043	+0,120	0	+0,021	-0,018	5,5		3,8		0,4	0,25
» 50 » 58	16×10	0	+0,050	-0,043	-0,021	-0,061	6,0	+0,2	4,3	+0,2		
» 58 » 65	18×11						7,0	0	4,4	0		
Св. 65 до 75	20×12						7,5		4,9			
» 75 » 85	22×14	+0,052	+0,149	0	+0,026	-0,022	9,0		5,4		0,6	0,4
» 85 » 95	25×14	0	+0,065	-0,052	-0,026	-0,074	9,0		5,4		,0,0	0,1
» 95 » 110	28×16						10,0		6,4			

Приложение 17 Предельные отклонения размеров $(d-t_1)$, $(d+t_2)$ (по ГОСТ 23360–78)

Высота шпонок, мм	Предельные отклон	ения размеров, мм
	$d-t_1$	$d+t_2$
От 2 то 6	0	+0,1
От 2 до 6	-0,1	0
Съ 6 то 19	0	+0,2
Св. 6 до 18	-0.2	0
Съ 19 до 50	0	+0,3
Св. 18 до 50	-0,3	0

Приложение 18

Рекомендуемые значения микронеровностей поверхности деталей

Таблица 18.1 Для посадок, соединяемых с зазором

	· · · · · ·	верстие	Вал				
Интервал размеров, мм	IT7	IT7		<i>IT</i> 8, <i>IT</i> 9			
	Параметр R_z , мкм						
Свыше 3 до 6	3,2	6,3	1,6				
Свыше 6 до 10							
Свыше 10 до 18				6,3			
Свыше 18 до 30							
Свыше 30 до 50	6,3		3,2				
Свыше 50 до 80		12,5					
Свыше 80 до 120							
Свыше 120 до 180				12,5			
Свыше 180 до 260			6,3				
Свыше 260 до 360	12,5	25					
Свыше 360 до 500							

Продолжение прил. 18

Таблица 18.2 Для посадок, соединяемых с натягом

для посадок, сосдиняемых с патягом												
		Валы				Отверстия						
			<i>h</i> 6									
Номин	иальные		<i>p</i> 6		<i>u</i> 8		<i>H</i> 7	<i>H</i> 8				
разме	ры, мм	<i>s</i> 5	<i>r</i> 6	<i>h</i> 7	<i>x</i> 8	<i>H</i> 6	<i>R</i> 7	U8	<i>H</i> 9			
	•	<i>r</i> 5	<i>t</i> 7	<i>s</i> 7	<i>z</i> 8		U7					
			<i>u</i> 7									
R_z , мкм												
O _T 1	1 до 3	0,8		1,6								
			1,6		6,3	1,6	3,2	3,2	6,3			
Свыш	е 3 до 6	1,6		3,2								
6	10											
10	18											
18	30		3,2			3,2	6,3	6,3				
30	50			6,3	12,5				12,5			
50	80	3,2						12,5				
80	120											
120	180		6,3			6,3	12,5					
180	260			12,5				20,5	20,5			
260	360	6,3										
360	500		12,5		25							

Приложение 19

Пример оформления титульного листа

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кузбасский государственный технический университет имени Т. Ф. Горбачева»

Кафедра технологии машиностроения

КУРСОВАЯ РАБОТА

по дисциплине «МЕТРОЛОГИЯ, СЕРТИФИКАЦИЯ, СТАНДАРТИЗАЦИЯ»

Вариант 88

Выполнил: студент гр. МТ-061 з/к № 064188 Винидиктов А. В.

Проверил: Дегтярева О. Н.

Кемерово 20..

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Метрология, стандартизация и сертификация : учебник для студ. высш. учеб. заведений / [А. И. Аристов, Л. И. Карпов, В. М. Приходько, Т. М. Раковщик]. 4-е изд. Москва : Академия, 2008. 384 с.
- 2. Пособие к решению задач по курсу «Взаимозаменяемость, стандартизация и технические измерения» / Н. Н. Зябрева. Москва : Высшая школа, 1977. 204 с.
- 3. Допуски и посадки : справочник : в 2 ч. Ч. 1 / В. Д. Мягков, М. А. Палей, А. Б. Романов, В. А. Брагинский. 6-е изд., перераб. и доп. Ленинград : Машиностроение, Ленингр. отдние, 1982.-543 с.
- 4. Допуски и посадки : справочник : в 2 ч. Ч. 2 / В. Д. Мягков, М. А. Палей, А. Б. Романов, В. А. Брагинский. 6-е изд., перераб. и доп. Ленинград : Машиностроение, Ленингр. отдние, 1983. 448 с.
- 5. Справочник контролера машиностроительного завода / под ред. А. И. Якушева. Москва : Машиностроение, $1980.-527~\rm c.$
- 6. ГОСТ 520–2002. Подшипники качения. Технические требования. Введ. 2002-07-01. Москва : Изд-во стандартов, 2002. 72 с.
- 7. ГОСТ 1139-87. Соединения шлицевые прямобочные. Введ. 1982-01-01. Москва : Изд-во стандартов, 1987. 9 с.
- 8. ГОСТ 16093–2004. Основные нормы взаимозаменяемости. Резьба метрическая. Допуски. Посадки с зазором. Введ. 2004-07-01. Москва: Изд-во стандартов, 2004. 28 с.
- 9. ГОСТ 24705–2004. Основные нормы взаимозаменяемости. Резьба метрическая. Основные размеры. Введ. 2004-07-01. Москва : Изд-во стандартов, 2004. 19 с.
- 10. ГОСТ 24851–81. Калибры гладкие для цилиндрических отверстий и валов. Виды. Введ. 1981-09-24. Москва : Изд-во стандартов, 1981.-8 с.
- 11. ГОСТ 24853–81. Калибры гладкие для размеров до 500 мм. Допуски. Введ. 1986-01-21. Москва : Изд-во стандартов, 1986. 11 с.

- 12. ГОСТ 25346—89. ЕСДП. Общие положения, ряды допусков и основных отклонений. Введ. 1992-07-07. Москва : Изд-во стандартов, 1992.-31 с.
- 13. ГОСТ 25347–82. ЕСДП. Поля допусков и рекомендуемые посадки. Введ. 1986-12-01. Москва : Изд-во стандартов, 1987. 51 с.
- 14. ГОСТ 23360. Соединения шпоночные с призматическими шпонками. Размеры шпонок и сечений пазов. Допуски и посадки. Введ. 1980-01-01. Москва: Изд-во стандартов, 1986. 15 с.
- 15. ГОСТ 3325-85. Подшипники качения. Поля допусков и технические требования к посадочным поверхностям валов и корпусов. Посадки. Введ. 1985-01-01. Москва : Изд-во стандартов, 1987. 50 с.

Дегтярева Ольга Николаевна Купченко Марина Валерьевна Останин Олег Александрович

МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ:

Учебное пособие к курсовой работе

Редактор 3. М. Савина

Подписано в печать 19.11.2013. Формат 60×84/16 Бумага офсетная. Гарнитура «Times New Roman» Уч.-изд. л. 7,00. Тираж 100 экз. Заказ

КузГТУ, 650000, Кемерово, ул. Весенняя, 28 Полиграфический цех КузГТУ, 650000, Кемерово, ул. Д. Бедного, 4a