Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кузбасский государственный технический университет имени Т. Ф. Горбачева»

Кафедра прикладной механики

РАСЧЕТ И КОНСТРУИРОВАНИЕ МУФТ

Методические указания к практической работе по механике для студентов направлений 280700.62, 140100.62, специальности 130101.65 и по прикладной механике для студентов специальности 130400.65

Составители С. В. Герасименко В. Ю. Садовец

Утверждены на заседании кафедры Протокол № 10 от 30.04.2013

Рекомендованы к печати учебно-методической комиссией специальности 130101.65 Протокол № 9 от 03.06.2013

Электронная копия находится в библиотеке КузГТУ

1. ЦЕЛЬ РАБОТЫ

Целью работы является ознакомление с классификацией и основными типами муфт, основными критериями работоспособности и порядком их расчета.

Необходимо по предложенным схемам подобрать и сконструировать муфты.

2. КРАТКИЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

Муфты – устройства для кинематической и силовой связи валов в приводах машин и механизмов. Муфты, кроме этого, передают крутящий момент без изменения его величины и направления; компенсируют погрешности взаимного расположения осей валов; разъединяют и соединяют валы без остановки двигателя; предохраняют машину от поломок в аварийных случаях; демпфируют толчки и вибрации; ограничивают частоту вращения и т. д.

На рисунке 2.1 показаны возможные погрешности взаимного расположения валов.

В общем случае муфта состоит из ведущей и ведомой полумуфт и соединительных элементов.

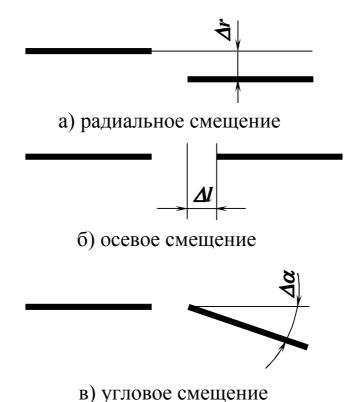


Рисунок 2.1 – Погрешности взаимного расположения валов

Классификация муфт представлена на рисунке 2.2. Механические муфты делятся на три группы: постоянные, управляемые и самоуправляемые. Постоянные муфты осуществляют постоянное и неподвижное соединение валов, управляемые – периодическое. Среди самоуправляемых муфт наибольшее распространение получило сочетание компенсирующих и упругих муфт с предохранительными и сцепляемыми управляемыми муфтами. Каждая группа, в свою очередь, делится на подгруппы: жесткие, упругие, компенсирующие, предохранительные и т. д. В подгруппе могут быть муфты разных видов. Например, предохранительные могут быть работающими трением (фрикционные), с ломающимся элементом и т.д. Кроме того, муфты изготавливаются в различном конструктивном исполнении: шариковые, роликовые, цепные, зубчатые и т.д.

2.1. Выбор муфты

Тип муфты назначает конструктор. При выборе типа необходимо учитывать возможности муфты, конструктивнотехнологические и экономические факторы, а также условия работы привода.

Стандартные и нормализованные муфты подбираются по крутящему моменту и угловой скорости, допускаемые значения которых для каждого типоразмера муфты приводятся в соответствующих стандартах и нормалях, выдержки из которых приведены в приложении Б, таблицы Б.1 – Б.12.

В качестве расчетного принимается наибольший передаваемый крутящий момент T_P , величина которого может быть рассчитана следующим образом:

$$T_P = kT_{HOM} \le [T_{II}], \tag{2.1}$$

где k — коэффициент динамичности, зависящий от вида агрегата и характера изменения нагрузки. Таблица по выбору коэффициента k приведена в приложении A, таблица A.1;

 $T_{_{\! HOM}}$ — номинальный передаваемый муфтой крутящий момент, Н·м.

Рисунок 2.2 – Классификация муфт

2.2. Краткие характеристики муфт

<u>Основная характеристика муфты</u> — величина крутящего момента $[T_{II}]$, на передачу которого она рассчитана.

<u>Упругие муфты</u> предназначены для уменьшения динамических нагрузок в приводе, часто устанавливаются между двигателем и редуктором.

<u>Предохранительные муфты</u> — защищают узлы и машину в целом от перегрузок, устанавливаются между редуктором и исполнительным органом.

<u>Компенсирующие муфты</u> – компенсируют погрешности взаимного расположения валов.

<u>Управляемые муфты</u> предназначены для включения и выключения исполнительного органа без остановки двигателя.

<u>Глухие муфты</u> образуют жесткое и неподвижное соединение валов при условии выполнения высоких требований к отклонению от соосности валов. Основные виды — втулочные (приложение В, рисунок В.1, а и б) и фланцевые (приложение В, рисунок В. 2).

Основные виды компенсирующих жестких муфт — кулачково-дисковые (приложение В, рисунок В.3) и зубчатые (приложение В, рисунок В.4). Зубчатые муфты способны компенсировать незначительные по величине любые смещения осей валов в любом их сочетании. Кулачково-дисковые муфты соединяют валы со значительным радиальным смещением. При этом допускаются незначительные угловые и осевые погрешности расположения.

Компенсирующие упругие муфты за счет упругих металлических и неметаллических элементов компенсируют погрешности расположения осей валов, снижают ударные перегрузки, изменяют жесткость машины для устранения явления резонанса. Примеры таких муфт — с цилиндрическими пружинами (приложение В, рисунок В.5) и муфта с резиновой торообразной оболочкой (приложение В, рисунок В.6). Упругий элемент муфты с торообразной оболочкой работает на кручение. Это придает муфте большую энергоемкость, высокие упругие и компенсирующие свойства (таблица 2.1). Металлические упругие элементы более долговечны и позволяют увеличивать нагрузочную способность муфт.

Муфта кулачковая (приложение В, рисунок В.7) и фрикционная дисковая (приложение В, рисунок В.8) относятся к управ-

<u>пяемым</u>. Включение и выключение кулачковой муфты сопровождается ударами, в отличие от фрикционных дисковых, где включение происходит более плавно за счет пробуксовывания дисков.

<u>Центробежные муфты</u> соединяют валы при достижении определенных значений угловых скоростей, при возрастании центробежных сил, действующих на шарики (приложение В, рисунок В.9) или колодки (приложение В, рисунок В.10).

<u>Предохранительные муфты</u> со срезным штифтом (приложение В, рисунок В.11) и фрикционные многодисковые срабатывают при определенных значениях крутящего момента, за счет разрушения предохранительного элемента или проскальзывания дисков.

<u>Муфты свободного хода</u> или <u>обгонные</u> передают вращение только в одном направлении, например муфта фрикционная роликовая (приложение B, рисунок B.12).

Таблица 2.1 – Характеристики основных видов муфт

					енсиру	
Вид муфты	Диапазон крутящих моментов T , $H \cdot M$	Диаметр соеди- няемых валов <i>d</i> , мм	Предельная скоростная характеристика	угло- вое $\Delta \alpha$, град	oce- Boe Δl , MM	ради- аль- ное <i>Д</i> r, мм
Втулочные	до 12500	6–105	_	_	_	_
Фланцевые	до 40000	12-250	70 м/с	_	_	_
Кулачково- дисковые	до 20000	16–150	4 c ⁻¹	30′	_	0,04 <i>d</i>
Зубчатые	как для	зубчатых	передач	30'	значи тель- ное	в пре- делах зазора
Упругие с	до 3000	14–240	4000 мин	2–6	1–5	2–6
торообраз-			1			
ной обо- лочкой						
Кулачковые	4–400	35–125	300 мин ⁻¹	_	_	_

3. ПОРЯДОК РАБОТЫ

- 3.1. Ознакомиться с натурными образцами основных типов муфт, принципами их работы и выбора.
- 3.2. По заданной схеме (приложение Г, задачи 1–5) назначить тип муфты на входе и выходе из редуктора. Выбрать типоразмер муфты. Выполнить эскиз и составить таблицу с основными геометрическими параметрами муфты.

4. ТРЕБОВАНИЯ К ОТЧЕТУ

Отчет должен содержать:

- краткие сведения о назначении муфт и критериях их выбора;
 - классификацию муфт.
 - эскизы четырех (указанных преподавателем) муфт;
 - решенную задачу по выбору муфты.

5. СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Иванов, М. Н. Детали машин / М. Н. Иванов, В. А. Финогенов. Москва: Высш. шк., 2006. 408 с.
- 2. Детали машин в примерах и задачах: Учебн. пособие / С. Н. Ничипорчик, М. И. Корженцевский, В. Ф. Калачев и др. Под общ. ред. С. Н. Ничипорчика. Москва: Высш. шк., 1981. 432 с.
- 3. Сборник задач по деталям машин: Учебн. пособие / Н. А. Синицын, И. И. Капканец, В. А. Ключарев и др. Под общ. ред. И. М. Чернина. Москва: Высш. шк., 1969. 288 с.

Гузенков, П. Г. Детали машин / П. Г. Гузенков. – Москва: Высш. шк., 1986. - 359 с.

ПРИЛОЖЕНИЕ А

Таблица А.1 — Значения коэффициента k, учитывающего условия эксплуатации привода

№	Нагрузка	Типы машины	k
1	Постоянная, с кратковременными перегрузками до 120% от номинальной	Конвейеры ленточные, станки токарные, шлифо- вальные, фрезерные	1,15- 1,2
2	Переменная, с колебаниями в пределах до 150% от номинальной	Конвейеры цепные, пластинчатые, винтовые; станки деревообделочные; центробежные насосы	1,3–1,5
3	Со значительными колебаниями до 200% от номинальной	Конвейеры скребковые и ковшовые (элеваторы); станки металлообрабатывающие с возвратно-поступательным движением; реверсивные приводы	1,7–2
4	Ударная, достигающая 300% от номинальной	Поршневые насосы и компрессоры; прессы и молоты; дробилки, шаровые мельницы	2,5–3

ПРИЛОЖЕНИЕ Б

Таблица Б.1 – Муфты втулочные со штифтами и шпонками по ГОСТ 24246-80

Диаметр со-											
единяемых											
валов d , мм	20	22	25	28	30	35	40	45	50	55	60
Наружный											
диаметр											
втулки D_M ,											
MM	35	35	40	45	45	50	60	70	80	90	100
Длина втулки											
L, MM	60	65	75	80	90	105	120	140	150	160	180
Допускаемый											
крутящий											
момент для											
муфт, Н∙м:											
co											
штифтами	50	56	112	127	132	250	280	530	600	630	1060
co											
шпонками	11	90	125	170	212	355	450	710	850	1065	1500

Таблица Б.2 – Муфты фланцевые по ГОСТ 20761-80

Диаметр соединяемых валов d ,	20- 28					36- 50		50- 70	50- 80	
MM	20	20	50	50	40	50	00	70	80	100
Диаметр фланца,										
MM	100	100	112	130	140	150	170	180	170	180
Длина втулки L ,										
MM	104	124	170	170	230	230	230	230	290	290
Допускаемый										
крутящий мо-										
мент, Н∙м	63	63	125	160	250	400	630	1000	630	1000

Таблица Б.3 – Муфты кулачково-дисковые по ГОСТ 20720-81

Диаметр соединяе-	15	25	40	50	65	75	85
мых валов d , мм	20	36	45	60	70	80	90
Диаметр муфты D_M ,	70	90	110	150	170	190	210
MM							
Длина муфты L , мм	95	115	160	240	275	310	355
Допускаемый мо-							
мент $[T]$, H ·м	120	250	500	1250	2000	3200	5000

Таблица Б.4 – Зубчатые муфты по ГОСТ 5006-55

Диаметр соединяемых					
валов d , мм	40	50	60	75	90
Наружный диаметр D_M , мм	170	185	220	250	290
Диаметр ступицы полумуфт					
D_2 , MM	55	70	90	110	130
Диаметр зубчатой обоймы					
D_I , mm	110	125	150	175	185
Длина муфты L , мм	115	145	170	215	235
Допускаемый крутящий					
момент $[T]$, $H \cdot м$	710	1400	3150	5600	8000

Таблица Б.5 – Муфты упругие с цилиндрическими пружинами

Диаметр									
соединяемых	25	28	32	35	40	45	50	55	65
валов d , мм									
Наружный диа-	100	112	125	140	160	180	200	225	250
метр D_M , мм	100	112	123	140	100	100	200	223	230
Длина муфты L ,	98	108	118	128	150	160	180	200	220
MM	90	100	110	120	150	100	100	200	220
Длина полумуфт	45	50	55	60	70	75	85	95	105
l, mm	43	30	55	00	70	13	65	93	103
Момент крутя-									
щий максималь-	46	70	100	135	180	260	375	550	790
ный T_{\max} , Н·м									

Таблица Б.6 – Муфты упругие с торообразной оболочкой по ГОСТ 20884-82

Диаметр ва-	22-	25-	30-	32-	36-	40-	55-	55-	63-	80-
лов d , мм	30	36	40	45	45	55	63	71	90	100
Наружный										
диаметр муф-	160	180	200	220	250	280	320	360	400	450
ты D_M , мм										
Длина муфты	170-	195-	245-	250-	260-	325	340-	340-	420-	485-
L, mm	230	230	305	310	325	323	400	400	480	565
Длина полу-	52-	63-	82-	82-	82-		112-	112-	143-	172-
муфт l , мм	82	82	112	112	112	112	143	143	172	214
Толщина										
оболочки δ ,	10	10	12,5	12,5	14	14	17	17	20	24
MM										
Диаметр										
прижимных	12	28	15	55	19	95	26	60	330	400
шайб D_I , мм										
Крутящий										
момент $[T]$,	80	125	200	250	315	500	800	1250	2000	3150
Н∙м										

Таблица Б.7 – Муфты фрикционно-дисковые по ГОСТ 156-77

Диаметр соединяемых валов d , мм	20, 24	25	25, 28	30	28	30, 32	36, 38	40	40, 42, 45, 48
Диаметр муфты,	8	5	10)5	11	15	13	35	152
Длина муфты L , мм	12	20	12	125		150		50	180
Длина полумуфт l , мм	50	60	60	80	60	80	80	110	110
Крутящий мо- мент [T], Н·м	6	3	10	00	16	60	25	50	400

Таблица Б.8 – Муфты кулачковые по ГОСТ 15620-77

Диаметр соединяемых					
валов d , мм	35-40	55-60	80	100	125
Диаметр муфты D_M , мм	100	150	200	250	300
Длина муфты L , мм	200	275	350	435	500
Длина полумуфт l_I , мм	70	90	110	140	160
L_2 , MM	95	139	182	225	260
Высота кулачков b		От	4 до 8 г	ММ	

Таблица Б.9 – Муфты центробежные с колодками

Диаметр соединяемых валов d , мм	32	38	45	55	70	80	100
Диаметр муфты D_M , мм	127	152	178	203	254	304	356
Длина муфты L , мм	143	155	181	195	228	268	303
Диаметр ступицы D_{CT} , мм	82	82	100	117	146	184	210

Таблица Б.10 – Муфты центробежные со стальными шариками

Диаметр соединяемых ва-	55-	60-	75-	80-	90-
лов d , мм	65	75	80	100	100
Диаметр муфты D_M , мм	210	230	260	290	310
Диаметр ступицы D_{CT} , мм	104	114	128	142	150
Длина муфты L , мм	203	226	258	309	328
Длина ведущей полумуф- ты l , мм	116	134	157	187	207

Таблица Б.11 – Муфты предохранительные со срезным штифтом

Диаметр соединяемых валов d ,	25	28	30	35	40	45	50	55	
MM									
Наружный диа- метр муфты D_M ,	100				125	160			
MM									
Длина муфты L , мм		70			100		140		
Расстояние от оси муфты до оси штифта R , мм	35				45	57,5			
Крутящий момент $[T]$, $H \cdot M$	30	50	50	155	270	430	825	1300	

Таблица Б.12 – Муфты свободного хода фрикционные, роликовые

Диаметр соединяемых валов d мм	25	30	35	40	45	50	70	90
Диаметр обоймы D_O , мм	65	80	130	100	125	125	160	200
Диаметр ролика d_P , мм	8	10	13	13	16	16	20	25
Длина ролика l_P , мм	14	18	24	24	28	28	32	40
Наружный диа- метр муфты D_M , мм	85	105	130	130	160	160	200	250
Длина полумуфты l , мм	28	35	45	45	55	55	60	70
Крутящий момент $[T]$, $H \cdot M$	175	340	740	122	220	220	400	785

ПРИЛОЖЕНИЕ В

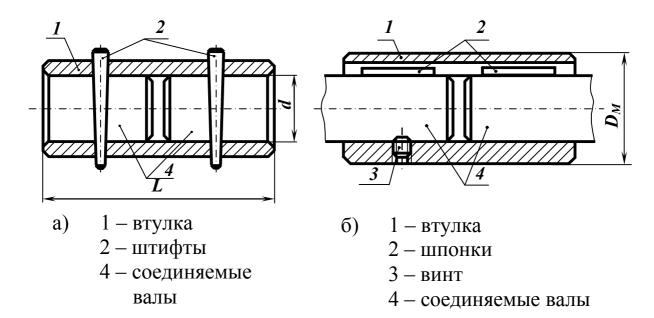


Рисунок В.1 – Муфта втулочная: а) со штифтами б) с призматическими шпонками

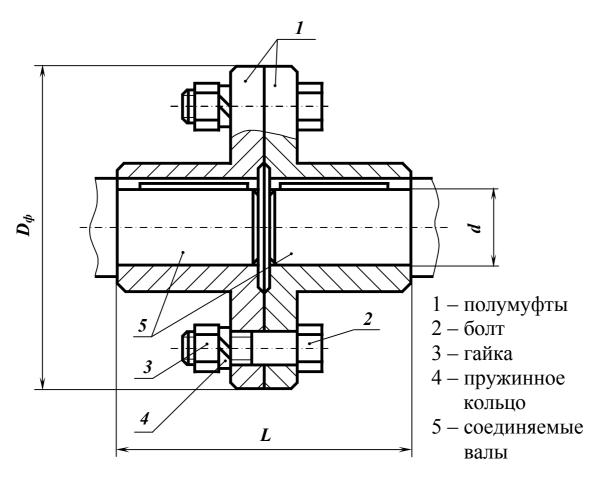


Рисунок В.2 – Муфта фланцевая

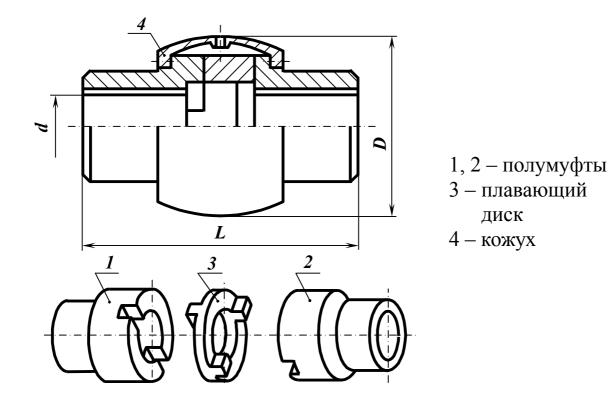


Рисунок В.3 – Муфта кулачково-дисковая

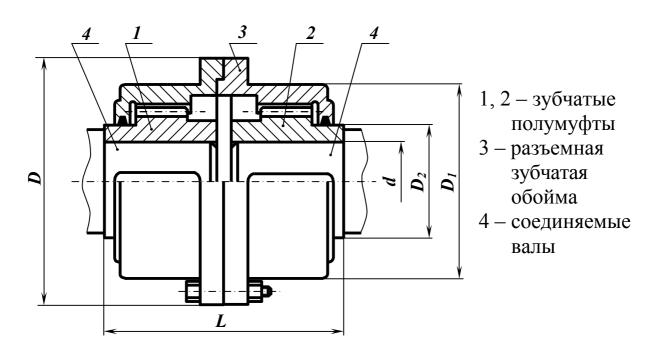
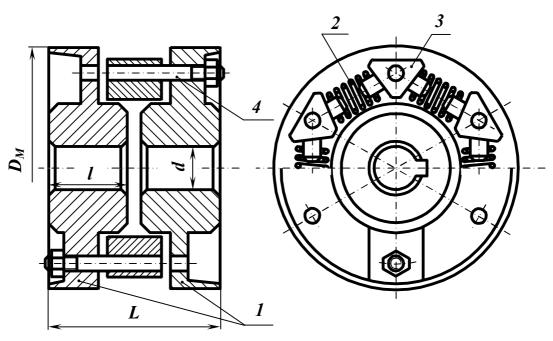



Рисунок В.4 – Муфта зубчатая

- 1 полумуфты
- 3 несущие сегменты с ограничителями
- 2 пружины сжатия
- 4 пальцы

Рисунок В.5 – Муфта упругая с цилиндрическими пружинами

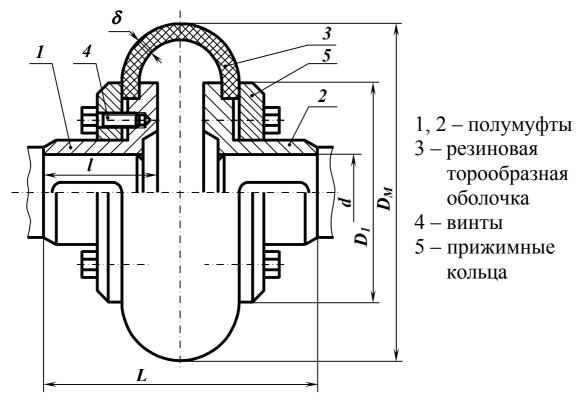
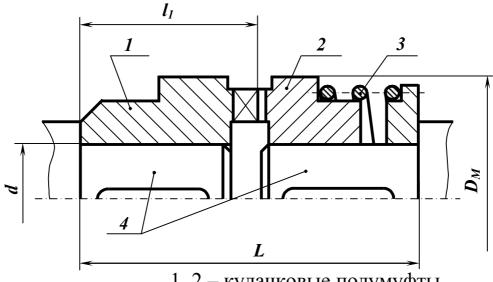
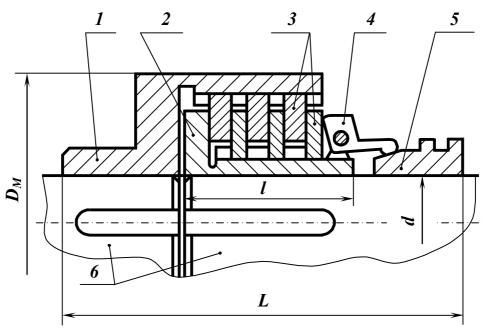



Рисунок В.6 – Муфта упругая с торообразной оболочкой



1, 2 – кулачковые полумуфты

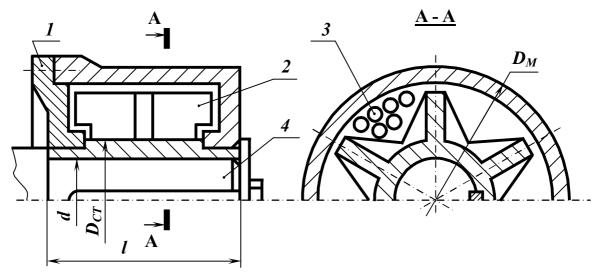
3 – пружина

4 – соединяемые валы

Рисунок В.7 – Муфта кулачковая

1 – наружная полумуфта

4 – рычаг


2 – внутренняя полумуфта

5 – втулка управления

3 – диски

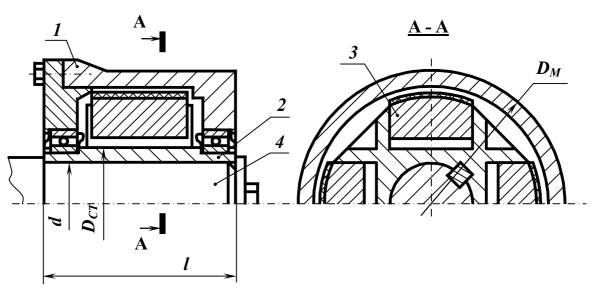

6 – соединяемые валы

Рисунок В.8 – Муфта управляемая фрикционно-дисковая

- 1 наружная полумуфта с крышкой
- 2 внутренняя полумуфта с крыльчаткой
- 3 шарики
- 4 соединяемые валы

Рисунок В.9 – Муфта центробежная со стальными шариками

- 1 наружная полумуфта с крышкой
- 2 внутренняя полумуфта
- 3 колодки
- 4 соединяемые валы

Рисунок В.10 – Муфта центробежная с колодками

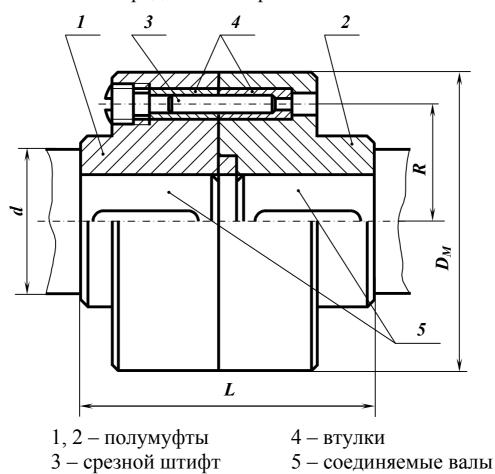


Рисунок В.11 – Муфта предохранительная со срезным штифтом

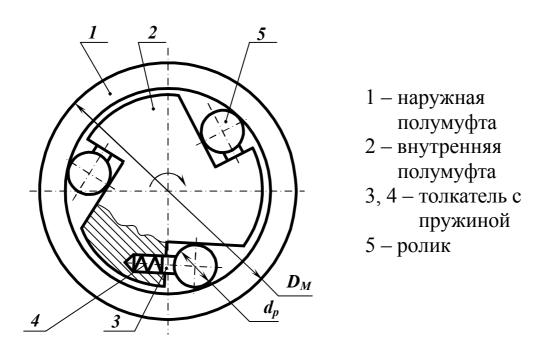


Рисунок В.12 – Муфта обгонная фрикционная роликовая

ПРИЛОЖЕНИЕ Г

ЗАДАЧА Г.1

Подобрать и сконструировать постоянную жесткую муфту для передачи движения в приводе воздуходувки (рис. Γ .1) по данным, приведенным в таблице Γ .1.

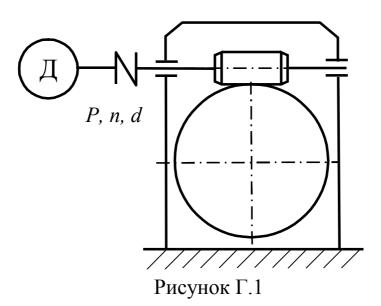


ТАБЛИЦА Г.1

Исходные				В	АРИА	НТЫ					
данные	1	2	3	4	5	6	7	8	9	10	
Мощность P , к B т	0,2	0,56	0,92	1,75	3,1	3,5	4,7	5,9	6,8	8,6	
Частота вращения <i>n</i> , мин ⁻¹	120	140	160	180	190	150	95	80	75	70	
Диаметр соединяе- мых валов <i>d</i> , мм	22	25	28	30	35	40	45	50	55	60	
Нагрузка	y	/дарна	R	незн	еменн начите и коле ниями	ель- еба-	пост	остоянная с пере			

ЗАДАЧА Г.2

Определить основные размеры компенсирующей муфты привода шаровой мельницы (рис. Γ .2). Передаваемая мощность — P, частота вращения валов — n, диаметры соединяемых валов — d и погрешности их расположения ($\Delta \alpha, \Delta \ell, \Delta r$) приведены в таблице Γ .2. Нагрузка — постоянная с перегрузками.

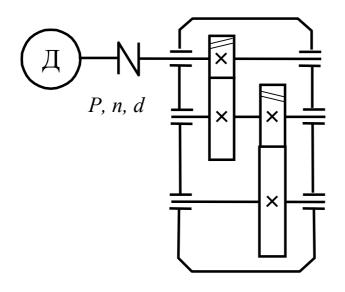


Рисунок Г.2

Исходные				I	ЗАРИ	АНТЬ	I			
данные	1	2	3	4	5	6	7	8	9	10
<i>P</i> , кВт	0,6	1,2	2,3	3,2	4,2	7,6	9,1	11,2	14,3	16,7
<i>n</i> , мин ⁻¹	130	140	160	175	180	200	80	60	40	30
d, mm	22	28	32	35	36	40	50	60	75	90
\Deltalpha , град	26							0,52	2	
$\Delta\ell$, mm			15			0,20,5				
Δr , mm			26				0,	050),5	

Продолжение приложения Γ

ЗАДАЧА Г.3

Подобрать и сконструировать постоянную жесткую муфту для соединения выходного вала редуктора и вала барабана ленточного транспортера (рис. Γ .3). Данные для расчета приведены в таблице Γ .3.

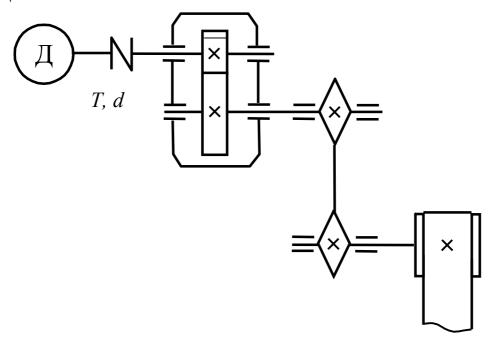


Рисунок Г.3

Исходные				Е	ВАРИ	АНТЬ	I			
данные	1	2	3	4	5	6	7	8	9	10
Крутящий										
момент T ,	42	51	102	75	350	180	680	300	530	2600
Н∙м										
Диаметр										
соединяе-	22	28	32	36	40	45	50	60	70	90
мых валов	22	20	32	30	40	43	30	00	/0	70
d, MM										
				пере	менна	ая со				
Нагрузка	пос	постоянная с значительны-						ударная		
Пагрузка	пер	егрузн	сами	ми к	олеба	ния-		уда	рпал	
					МИ					

ЗАДАЧА Г.4

Определить размеры упругой компенсирующей муфты с торообразной оболочкой, соединяющей валы электродвигателя и двухступенчатого коническо-цилиндрического редуктора привода скребкового транспортера (рис. Г.4). Данные для расчета приведены в таблице Г.4.

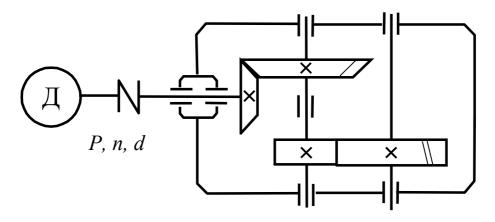


Рисунок Г.4

				D	A DIA A	TITTI							
Исходные		ВАРИАНТЫ											
данные	1	2	3	4	5	6	7	8	9	10			
Мощность <i>Р</i> , кВт	0,8	1,8	2,4	2,6	2,8	3,8	4,8	5,2	6,8	8			
Частота вращения <i>n</i> , мин ⁻¹	200	210	160	170	130	140	100	80	70	60			
Диаметр соединяе- мых валов d , мм	28	32	36	40	45	50	60	63	80	90			
Нагрузка		постоянная с перегрузками			еменн ебания		переменная со значительными колебаниями						

ЗАДАЧА Г.5

Рассчитать предохранительную муфту со срезным штифтом, установленную в приводе поршневого компрессора (рис. Γ .5), по данным приведенным в таблице Γ .5. Нагрузка – ударная.

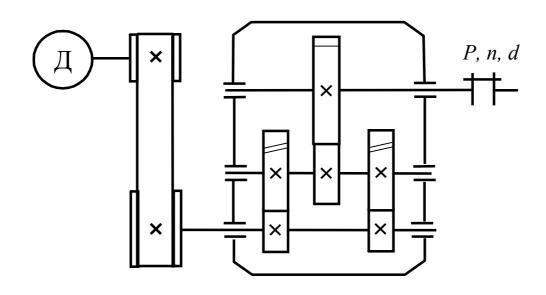


Рисунок Г.5

Исходные				В	АРИА	НТЫ	-			
данные	1	2	3	4	5	6	7	8	9	10
Мощность P , к B т	0,2	0,33	0,35	0,8	1,2	2,5	2,7	4,3	7,8	14,8
Частота вращения <i>n</i> , мин ⁻¹	200	260	255	280	300	350	365	380	400	410
Диаметр соединяе- мых валов <i>d</i> , мм	25	28	30	35	35	40	40	45	50	55

Составители Герасименко Сергей Владимирович Садовец Владимир Юрьевич

РАСЧЕТ И КОНСТРУИРОВАНИЕ МУФТ

Методические указания к практической работе по механике для студентов направлений 280700.62, 140100.62, специальности 130101.65 и по прикладной механике для студентов специальности 130400.65

Печатается в авторской редакции

Подписано в печать 24.06.2013. Формат $60\times84/16$. Бумага офсетная. Отпечатано на ризографе. Уч.-изд. л. 1,8. Тираж 116 экз. Заказ

КузГТУ 650000, Кемерово, ул. Весенняя, 28. Типография КузГТУ 650000, Кемерово, ул. Д.Бедного, 4 А.