МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кузбасский государственный технический университет имени Т. Ф. Горбачева»

Кафедра стационарных и транспортных машин

ОПРЕДЕЛЕНИЕ БЕЗОПАСНОЙ СКОРОСТИ ДВИЖЕНИЯ НА ЖЕЛЕЗНОДОРОЖНОМ КАРЬЕРНОМ ТРАНСПОРТЕ

Методические указания к курсовому и дипломному проектированию по дисциплине «Транспортные машины» для студентов специальности 150402 «Горные машины и оборудование»

Составитель А. Ю. Захаров

Утверждены на заседании кафедры Протокол № 6 от 25.12.2012

Рекомендованы к печати учебно-методической комиссией специальности 150402 Протокол № 8 от 15.01.2013

Электронная копия находится в библиотеке КузГТУ

1. ВВЕДЕНИЕ

На карьерном железнодорожном транспорте применяются следующие способы торможения подвижного состава:

- фрикционное торможение, осуществляемое с использованием силы трения, возникающей при воздействии тормозных колодок на колеса или рельс (фрикционные тормоза по способу управления разделяются на пневматические, электропневматические, электромагнитные);
- электрическое (электродинамическое) торможение, осуществляемое переводом тяговых двигателей электровозов на работу в генераторном режиме. При этом различают рекуперативное торможение с возвращением вырабатываемой энергии в контактную сеть и электродинамическое с поглощением тепла в окружающую среду.

Основным видом торможения поездов на карьерах является фрикционное, осуществляемое прижатием тормозных колодок к колесам локомотива и вагонов.

Тормозной путь поезда зависит от многих параметров системы «поезд – рельсовый путь»: начальной скорости движения поезда, вида локомотива, вида и количества вагонов в составе, вида торможения (фрикционное, электрическое), вида тормозных колодок (чугунные, композиционные) и их количества, уклона рельсового пути и т.д. Влияние этих параметров на тормозной путь поезда рассматривается ниже.

2. ТЕОРЕТИЧЕСКИЕ ПРЕДПОСЫЛКИ

Тормозные средства поезда должны обеспечивать его движение и остановку на длине тормозного пути L в зависимости от начальной скорости движения V (рис. 1). Кривая, изображённая сплошной линией на рис. 1, имеет нелинейный характер и называется тормозной характеристикой поезда.

Полный тормозной путь поезда включает в себя подготовительный и действительный тормозные пути:

$$L = L_n + L_{\partial}, \tag{1}$$

где L_n – подготовительный путь торможения, проходимый поездом за время t_n , которое складывается из времени реакции машиниста локо-

мотива и времени приведения тормозов в действие; L_{∂} — действительный тормозной путь (торможение при непосредственном взаимодействии тормозных колодок с колесами).

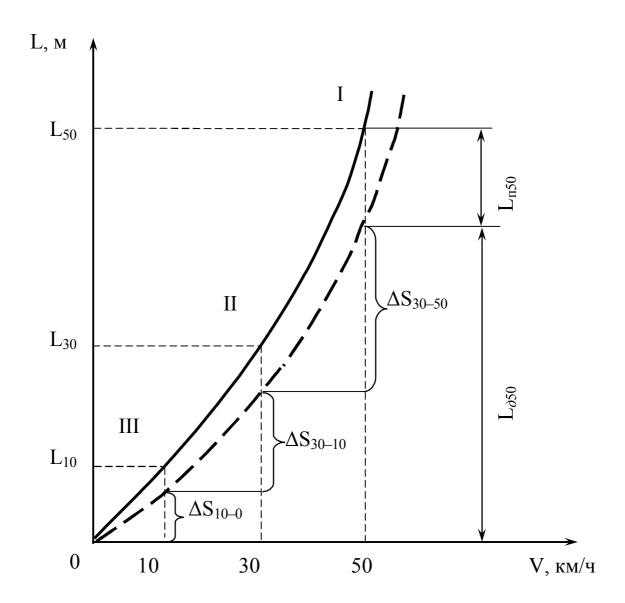


Рис. 1. Тормозная характеристика поезда при экстренном торможении

На железных дорогах подготовительный путь торможения принято определять по формулам:

при уклонах $i \le 20 \%$

$$L_n = \frac{1000V_n t_n}{3600}, \text{ M}; \tag{2}$$

при уклонах i > 20 %

$$L_n = \frac{1000 V_{H} t_n}{3600} + 4,62 \cdot 10^{-4} (g i - w_o) t_n^2, \,\mathrm{M},\tag{3}$$

где $g=9,81\,\mathrm{m/c^2}$ — ускорение свободного падения; w_o — основное удельное сопротивление движению поезда, H/т; $V_{\scriptscriptstyle H}$ — начальная скорость движения.

Время подготовки t_n в зависимости от способа управления тормозами принимается равным 4-5 с при пневматическом приводе и 0,5 с — при электрическом приводе.

В процессе экстренного торможения скорость движения поезда изменяется от начальной до нуля. Для того чтобы учесть влияние скорости на величину удельного сопротивления движению и величину коэффициента трения тормозной колодки о колесо, начальная скорость движения поезда разбивается на интервалы и в каждом интервале определяется действительный тормозной путь L_{∂} по среднему значению скорости в соответствующем интервале.

Таким образом:

$$L_{\partial} = \Delta S_{1-2} + \Delta S_{2-3} + \dots \Delta S_{n-1-n}, \tag{4}$$

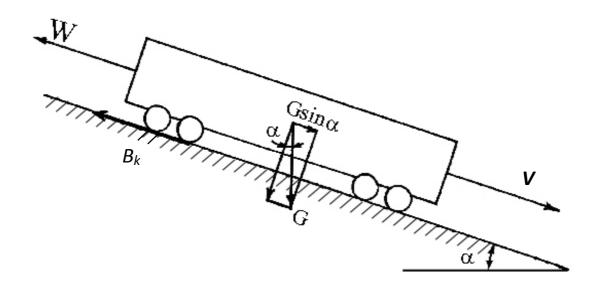
причём точность расчётов будет тем выше, чем больше будет взято число интервалов скоростей в пределах от начальной V_{H} до нулевой. В качестве примера на рис. 1 начальная скорость поезда перед торможением принята равной 50 км/ч с разбиением её на три интервала (50-30; 30-10; 10-0). В основу определения действительных тормозных путей ΔS_{i} в принятых интервалах скоростей положены следующие теоретические предпосылки.

Как известно из курса теоретической механики основное уравнение динамики для несвободной материальной точки имеет вид:

$$m a = \sum_{i=1}^n F_i ,$$

где m и a — соответственно, масса и ускорение материальной точки; $\sum_{i=1}^{n} F_{i}$ — векторная сумма всех действующих на материальную точку сил.

Для получения уравнения движения поезда примем допущение о том, что большинство его точек движется поступательно, а вращение


некоторых элементов совершающих плоскопараллельное движение (колёса поезда и вагонов, роторы электродвигателей, отдельные узлы в трансмиссиях и т.д.) учтём коэффициентом приведения κ_{np} . Тогда по теореме о поступательном движении твёрдого тела все точки поезда будут двигаться по одинаковым, совпадающим при наложении траекториям и иметь в данный момент времени равные скорости и ускорения. Следовательно, уравнение движения несвободной механической системы (поезда) будет таким же, как и уравнение движения одной несвободной точки, за исключением точек, находящихся в элементах, совершающих плоскопараллельное движение. Повышенный запас кинетической энергии этих элементов (за счёт вращательного движения) будет учитываться коэффициентом κ_{np} .

Спроецировав основное уравнение динамики на направление движения поезда (рис. 2), получим

$$ma = \pm G \sin \infty + W_o + B_k, \tag{5}$$

F

где $\pm G \sin \infty$, W_o , B_k — соответственно составляющая веса поезда (скатывающая сила), сила основного сопротивления движению, тормозное усилие, кН.

движения поезда

Ускорение a, массу m и элементарный путь dS можно записать в виде:

$$a = \frac{dV}{dt};$$
 $m = 1000(1+\kappa_{np})(P+Q);$ $dS = Vdt,$

где P и Q — массы локомотива и прицепной части состава, т; $(1+\kappa_{np})$ — коэффициент приведения, учитывающий инерцию вращающихся масс, равный 1,2-1,3 — для тяговых агрегатов, 1,03-1,05 — для груженых вагонов, 1,08 — для эксплуатационных расчётов.

После подстановки этих равенств в (5) и небольших преобразований получим

$$dS = \frac{1000(1 + \kappa_{np})VdV}{G \cdot \sin \infty} + \frac{W_o}{P + Q} + \frac{B_k}{P + Q},$$

или в удельной форме

$$dS = \frac{VdV}{C(\pm gi + w_o + b)},\tag{6}$$

где $C=1/1000(1+\kappa_{np})$ – инерционный параметр; $I=1000 {\rm tg} \alpha \approx 1000 {\rm sin} \infty$ – уклон в промилях, так как угол при локомотивной тяге не превышает $4^{\rm o}$. Поэтому можно допустить $\sin \infty \approx {\rm tg} \infty$; $w_o=W_o/(P+Q)$ – удельная сила сопротивления на 1 т состава, H/T; $b=B_k/(P+Q)$ – удельная тормозная сила на 1 т состава, H/T.

После интегрирования равенства (6) в соответствующих пределах найдём действительный тормозной путь на рассматриваемом интервале скоростей

$$\Delta S_{1-2} = \int_{V_1}^{V_2} \frac{VdV}{C(\pm gi + w_o + b)} = \frac{V_2^2 - V_1^2}{2(\pm gi + w_o + b)}.$$

Считая за начальную скорость $V_{\scriptscriptstyle H} = V_2$, а за конечную $V_{\scriptscriptstyle K} = V_1$, получим

$$\Delta S_{1-2} = \frac{1000(1 + \kappa_{np})(V_H^2 - V_K^2)}{2 \cdot 3.6(\pm gi + w_o + b)}.$$

Окончательно

$$\Delta S = L_{\partial} = \frac{41.6(V_{\kappa}^2 - V_{H}^2)}{\pm gi + w_{O} + b}.$$
 (7)

Тогда действительный тормозной путь (рис. 1) при начальной скорости движения поезда 50 км/ч согласно (4) будет равен

$$L_{\partial 50} = \Delta S_{50-30} + \Delta S_{30-10} + \Delta S_{10-0}, \tag{7a}$$

а полный тормозной путь по (1)

$$L_{50} = L_{n \ 50} + L_{\partial 50}. \tag{8}$$

Величина L_{50} соответствует ординате точки I на рис. 1. Для нахождения каждой последующей точки (II, III) тормозной характеристики поезда весь расчёт необходимо повторить заново при соответствующих начальных скоростях поезда. Тормозные пути поезда при начальных скоростях его движения 30 и 10 км/ч найдём по формулам.

$$L_{30} = L_{n30} + L_{\partial 30} \tag{9}$$

И

$$L_{10} = L_{n \, 10} + L_{\partial 10},\tag{10}$$

где $L_{\partial 30} = \Delta S_{30-10} + \Delta S_{10-0}$; $L_{\partial 10} = \Delta S_{10-0}$.

Теперь рассмотрим более подробно величины w_o и b, входящие в формулу (5).

Основное удельное сопротивление движению у локомотива и вагонов различно, поэтому в расчётах берется их средневзвешенное значение

$$w_o = \frac{w_o' \cdot P + w_o'' \cdot Q}{P + Q},\tag{11}$$

где w_o' и w_o'' – удельные сопротивления движению локомотива и вагонов-думпкаров, определяемые в функции от средней скорости движения поезда на рассматриваемом интервале торможения, H/т:

для локомотива при движении под током

$$w_o' = 28 + 0.8V, (12)$$

и без тока

$$w_o' = 36 + 0.9 V ; (13)$$

для гружёных вагонов-думпкаров четырехосных

$$w_o' = 31 + 0.2 V, (14)$$

шестиосных и восьмиосных на постоянных путях

$$w_o' = 36 + 0.4 V. (15)$$

Удельное тормозное усилие b пропорционально тормозной силе B_k и обратно пропорционально общей массе состава (P+Q). Схема возникновения тормозной силы B_k показана на рис. 3.

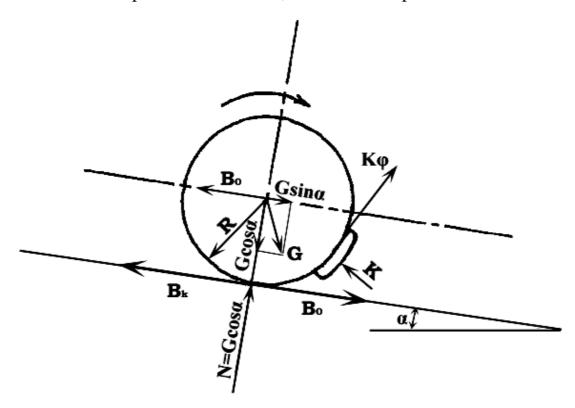


Рис. 3. Схема возникновения тормозной силы

При прижатии тормозной колодки к колесу с усилием \overline{K} возникает сила трения $\overline{K} \varphi$ и реакция в оси колеса \overline{R} . Ничего не изменится, если пару сил ($\overline{K} \varphi$, \overline{R}) заменить эквивалентной парой сил (\overline{B}_o , \overline{B}'_o) с тем же моментом и плечом, равным радиусу колеса. Тогда, согласно третьему закону Ньютона, в области взаимодействия колеса с рельсом возникает сила \overline{B}_k — внешняя по отношению к поезду, приложенная со стороны рельса и вызывающая торможение поезда. Заметим также, что модули сил в эквивалентных парах равны между собой

$$|\overline{K}\varphi| = |\overline{R}| = |\overline{B}_o| = |\overline{B}_o'| = |\overline{B}_k|,$$

так как равны их моменты и плечи.

Так как силы торможения тягового агрегата и думпкаров различны из-за различного прижатия колодок к колесу, исполнения колодок (чугунные, композиционные) и их количества, то за расчётное значение удельной тормозной силы принимается её средневзвешенная величина

$$b = \frac{\sum B_k}{P+Q} = \frac{1000(K_{\tilde{e}}^{\Sigma} \varphi_{\tilde{e}} + nK_{\tilde{e}}^{\Sigma} \varphi_{\tilde{e}})}{P+Q},$$
(16)

где $K_{\bar{e}}^{\Sigma}$ — суммарное усилие нажатия тормозных колодок локомотива; $K_{\bar{e}}^{\Sigma}$ — суммарное усилие нажатия тормозных колодок думпкара; n — количество думпкаров в составе; φ_n , $\varphi_{\bar{e}}$ — коэффициенты трения колодки о колесо, определяемые из эмпирических выражений:

для чугунных колодок

$$\varphi = 0.78 \frac{16K + 100g}{80K + 100g} \cdot \frac{100}{3,18V_{cp} + 100},$$
(17)

для композиционных колодок

$$\varphi = 0,603 \frac{5K + 100g}{20K + 100g} \cdot \frac{100}{1,4V_{cp} + 100};$$
(18)

где V_{cp} — средняя скорость движения поезда в рассматриваемом интервале скоростей, км/ч; K — усилие нажатия отдельной колодки.

Сила трения между колодкой и колесом не должна превышать силу трения между колесом и рельсом, так как в противном случае будет происходить скольжение колеса по рельсу. Условие, при котором скольжение колеса о рельс отсутствует, имеет вид:

для системы «одна тормозная колодка – колесо – рельс»

$$K\varphi \leq N\psi$$
,

для всего подвижного состава

$$\sum K_{\tilde{e}}^{\Sigma} \varphi_{\tilde{e}} + \sum K_{\tilde{e}}^{\Sigma} \varphi_{\tilde{a}} n \le (P + Q) g \psi , \qquad (19)$$

где ψ – коэффициент трения колеса о рельс в режиме торможения.

3. ПОРЯДОК РАСЧЁТА

- 1. Выбираем параметры поезда и железнодорожного пути в соответствии с вариантом задания (табл.1): массу локомотива P (т) (табл.3 приложения), массу вагона $q_{\rm T}$ (т) (табл.2 приложения), вид колодок (чугунные, композиционные) принимается в соответствии с табл. 1 приложения и по этой же таблице определяется усилие прижатия колодок к колёсам локомотива и думпкаров K, $K_{\bar{e}}^{\Sigma}$, $K_{\bar{e}}^{\Sigma}$.
 - 2. Определяется прицепная масса поезда $Q = q_T n$;
- 3. Разбиваем абсциссу V (рис. 1) на три интервала 50-30, 30-10, 10-0 км/ч при средней скорости в каждом интервале соответственно 40, 20 и 5 км/ч;
 - 4. Задаем начальную скорость движения поезда 50 км/ч:
- по формуле (3) вычисляем подготовительный тормозной путь $(w_o$ определяем по формулам (11-15) при значении V=50 км/ч).
- вычисляем действительный тормозной путь в интервале 50-30 км/ч:
 - определяем w_o (11-15) и φ (17,18) при средней скорости движения в интервале 40 км/ч;
 - вычисляем L_{∂} по формуле (7);
- вычисляем действительный тормозной путь в интервале 30-10 км/ч:

- определяем w_o (11-15) и φ (17,18) при средней скорости движения в интервале 20 км/ч;
- вычисляем L_{∂} по формуле (7);
- ullet вычисляем действительный тормозной путь в интервале 10- 0 км/ч
- определяем w_o (11-15) и φ (17,18) при средней скорости движения в интервале 5 км/ч;
 - вычисляем L_{∂} по формуле (7);
- вычисляем полный тормозной путь L_{50} при начальной скорости 50 км/ч (7a, 8) и наносим соответствующую точку в координаты тормозной характеристики (рис. 1);
 - 5. Задаемся начальной скоростью движения поезда 30 км/ч:
- по формуле (3) вычисляем подготовительный тормозной путь $(w_o$ определяем по формулам (11-15) при значении V=30 км/ч);
- вычисляем полный тормозной путь L_{30} при начальной скорости 30 км/ч (9) и наносим соответствующую точку в координаты тормозной характеристики (рис. 1);
 - 6. Задаем начальную скорость движения поезда 10 км/ч:
- по формуле (3) вычисляем подготовительный тормозной путь $(w_o$ определяем по формулам (11-15) при значении V=10 км/ч);
- вычисляем по формуле (9) полный тормозной путь L_{30} при начальной скорости 30 км/ч и наносим соответствующую точку в координаты тормозной характеристики (рис. 1);
- 7. Через полученные три точки из начала координат проводим плавную кривую.

Таблица 1 Варианты задания по построению тормозной характеристики

Вариант	Число думпкаров	Уклон	Локомотив	Думпкар
1	5	50	ОПЭ-1(3-секц.)	BC-60
2	6	40	ОПЭ-1(3-секц.)	BC-85
3	7	30	ОПЭ-1(3-секц.)	BC-105
4	8	20	ОПЭ-1(3-секц.)	BC-136
5	9	10	ОПЭ-1(3-секц.)	BC-180
6	8	35	ОПЭ-1(2-секц.)	BC-60
7	7	25	ОПЭ-1(2-секц.)	BC-85
8	6	15	ОПЭ-1(2-секц.)	BC-105
9	6	5	ОПЭ-1(2-секц.)	BC-136
10	8	0	ОПЭ-1(2-секц.)	BC-180

11	9	30	ОПЭ-1А(3-секц.)	BC-60
12	10	25	ОПЭ-1А(3-секц.)	BC-85
13	11	20	ОПЭ-1А(3-секц.)	BC-105
14	8	15	ОПЭ-1А(3-секц.)	BC-136
15	11	10	ОПЭ-1А(3-секц.)	BC-180
16	7	40	ОПЭ-1А(2-секц.)	BC-60
17	8	35	ОПЭ-1А(2-секц.)	BC-85
18	9	30	ОПЭ-1А(2-секц.)	BC-105
19	10	25	ОПЭ-1А(2-секц.)	BC-136
20	11	20	ОПЭ-1А(2-секц.)	BC-180
21	5	15	EL - 1	BC-60
22	5	10	EL - 1	BC-85
23	5	20	EL - 1	BC-105
24	5	5	EL - 1	BC-136
25	4	0	EL - 1	BC-180

Таблица 1 Значения тормозных нажатий для различного подвижного состава

	Действительные нажатия (Н) при давлении								
	в тормозном цилиндре, МПа								
	0,4 (гр	ужёный)	(0,36	0,14				
					(порожний)				
Подвижной состав	тормозной колодки	суммарное всех колодок	тормозной колодки	суммарное всех колодок	тормозной колодки	суммарное всех колодок			
Электровоз EL-1	69	828	42	504	20	240			
Тяговый агрегат	43/19	2064/912	26/12	1248/576	12/5	576/240			
ПЭ2М, ОПЭ2,									
ОПЭ1А, ОПЭ1Б,									
ПЭЗТ (три секции)									
Тяговый агрегат	50	2400	32	1536	15	720			
ОПЭ1 (три секции)									
Думпкары:									
6BC-60	37/24	296/192	23/15	184/120	11/9	88/72			
2BC-85	35	420	22	264	11	132			
2BC-105	38/22	368/216	24/14	232/136	12/7	120/64			
BC-180	-/22	-/352	-/14	-/224	-/7	-/112			

Примечание: Перед чертой приведены данные для чугунных колодок, за чертой – для композиционных.

Таблица 2 Технические характеристики думпкаров

Параметры	6BC-60	BC-85	2BC-105	BC-136	2BC-180
1	2	3	4	5	6
Грузоподъемность, т	60	85	105	136	180
Объем кузова геометрический, м ³	26,2	38	48,5	68	58,0
Масса тары вагона, т	29,0	35,0	48,0	67,5	68,0

Продолжение табл. 2

1	2	3	4	5	6
Коэффициент тары	0,484	0,41	0,45	0,5	0,38
Число осей	4	4	6	8	8
Нагрузка на ось, кН	218	294	250	249	304
Число разгрузочных	4	4	6	8	8
цилиндров					
Угол наклона кузова	45	45	45	45	45
при разгрузке, градус					

Таблица 3 Технические характеристики карьерных электровозов и тяговых агрегатов

Параметры	Элек-	Тяговые	агрегаты	Тяговые агрегаты переменного				
	тровоз	постоянн	юго тока	тока				
	пост.							
	тока							
	EL-1	ПЭ2М	ПЭ3Т	ОПЭ1	ОПЭ2	ОПЭ1А	ОПЭ1В	
1	2	3	4	5	6	7	8	
Сцепная	150	368	372	360	372	372	372	
масса, т								
Состав тя-								
гового аг-	-	ЭУ+МД+	, ,	ЭУ+ДС+	ЭУ+МД+		, ,	
регата		+МД	+МД	+МД	+МД	+МД	+МД	
Осевая								
формула	$2_0 + 2_0 + 2_0$	$3(2_0-2_0)$	$3(2_0-2_0)$	$3(2_0-2_0)$	$3(2_0-2_0)$	$3(2_0-2_0)$	$3(2_0-2_0)$	
Напряже-								
ние	1500	1,5/3,0	3,0	10,0	10,0	10,0	10,0	
сети, В								
Часовой								
режим:								
мощность,								
кВт	-	5460	5325	6480	5325	5325	5325	
тяг. усилие,								
кН	-	694	662	810	662	662	662	
Скорость,								
км/ч	30	28,9	29,5	30	29,5	29,5	29,5	
Нагрузка на			,		,	ĺ		
ось, кН	250	310	310	300	310	310	310	

Продолжение табл. 3

1	2	3	4	5	6	7	8
Грузоподъемность							
моторного	-	44	44	45	44	44	44
думпкара, т							
Мощность дизеля							
автономного			1470	1.470		1100	1.470
питания, кВт	ı	-	1470	1470	-	1100	1470
Наименьший							
радиус кривой, м	50	80	80	80	80	80	80
Длина по осям							
автосцепок, мм	-	51306	51306	59900	51506	51306	51306

Примечание: ЭУ - электровоз управления; ДС - дизельная секция, <math>МД - моторный думпкар.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Рудничный транспорт и механизация вспомогательных работ : каталог-справочник / под ред. В. М. Щадова. М.: Горная книга, 2010. 534 с.
- 2. Захаров, А. Ю. Основы расчета карьерного транспорта : учеб. пособие по курсу «Транспортные машины» / А. Ю. Захаров. КузГТУ. Кемерово, 2012. 110 с.
- 3. Галкин, В. И. Транспортные машины / В. И. Галкин, Е. Е. Шешко. М.: Горная книга; Изд-во Моск. гос. горн. ун-та, 2010. 578 с.

Составитель

Александр Юрьевич Захаров

ОПРЕДЕЛЕНИЕ БЕЗОПАСНОЙ СКОРОСТИ ДВИЖЕНИЯ НА ЖЕЛЕЗНОДОРОЖНОМ КАРЬЕРНОМ ТРАНСПОРТЕ

Методические указания к курсовому и дипломному проектированию по дисциплине «Транспортные машины» для студентов специальности 150402 «Горные машины и оборудование»

Печатается в авторской редакции

Подписано в печать 30.01.2013. Формат 60×84/16. Бумага офсетная. Отпечатано на ризографе. Уч.-изд. 0,8 л. Тираж 36 экз. Заказ КузГТУ. 650000, Кемерово, ул. Весенняя, 28. Типография КузГТУ. 650000, Кемерово, ул. Д. Бедного, 4а.