Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кузбасский государственный технический университет имени Т.Ф. Горбачева»

Кафедра обогащения полезных ископаемых

Составитель

Л. А. Суслина

Основы научных исследований

Методические указания для лабораторных работ для студентов всех форм обучения

Рекомендованы учебно-методической комиссией специализации «Обогащение полезных ископаемых» в качестве электронного издания для использования в учебном процессе

Рецензенты

Клейн М. С. – доктор технических наук, профессор кафедры обогащения полезных ископаемых

Удовицкий В. И. – доктор технических наук, профессор кафедры обогащения полезных ископаемых, председатель учебно-методической комиссии специализации «Обогащение полезных ископаемых»

Суслина, Людмила Алексеевна. Основы научных исследований: методические указания для лабораторных работ [Электронный ресурс] для студентов специальности «Горное дело», образовательная программа «Обогащение полезных ископаемых», всех форм обучения / сост.: Л. А. Суслина. – Кемерово : КузГТУ, 2014. – Систем. требования : Pentium IV; ОЗУ 8 Мб; Windows XP; мышь. – Загл. с экрана.

Приведены темы для лабораторной работы, контрольные вопросы, даны ссылки на используемую литературу.

[©] КузГТУ, 2014

[©] Суслина Л. А., составление, 2014

Лабораторные занятия проводятся целью научить студентов пользоваться методами дисперсионного, корреляционного и регрессионного анализов для обработки и анализа результатов эксперимента в обогащении; сформировать факторные эксперименты; планировать применять на практике критерии сравнения для обоснования степени точности конечного результата.

Приобретенные знания и навыки студенты могут использовать при исследовании полезных ископаемых на обогатимость, при выполнении дипломных работ.

Студенты очной формы обучения выполняют задания в течение девяти занятий (18 ч), заочной формы обучения в течение трех занятий (6 ч).

Лабораторные занятия для студентов ОФО

Неделя семестра	№ занятия	Наименование работы	Объем, ч
6	1	Определение среднего арифметического и средней квадратичной ошибки измерений. Расчет системати-	2/0,06
		ческой ошибки и доверительного интервала.	
6 -7	2, 3	Сравнение выборок с использованием параметрических критериев сравнения.	4/0,11
7	4, 5	Сравнение выборок с использованием непараметрических критериев сравнения.	4/0,11
8	6	Обработка результатов эксперимента с помощью ре-	1/0,03
		грессионного анализа, с использованием метода наименьших квадратов.	
8	6	Определение уравнения регрессии с использованием	2/0,06
	Ü	методов усреднения экспериментальных данных и	2 , 0,00
		методов приведения уравнения к линейному виду.	
9	7	Определение коэффициентов корреляции.	1/0,03
9	8	Планирование и полный расчет дробного факторного	1/0,03
		эксперимента. Техника проведения эксперимента ме-	
		тодом крутого восхождения.	
9	9	Дисперсионный анализ, латинский и греко-латинский	3/0,09
		квадраты.	
		ИТОГО	18/0,5

Лабораторные занятия для студентов ЗФО

№ занятия	Наименование работы	Объем, ч
1	Сравнение выборок с использованием непараметрических крите-	2/0,06
	риев сравнения.	
2, 3	Обработка результатов эксперимента с помощью регрессионного	4/0,11
	анализа, с использованием метода наименьших квадратов.	
	Определение уравнения регрессии с использованием методов	
	усреднения экспериментальных данных и методов приведения	
	уравнения к линейному виду.	
	Определение коэффициентов корреляции.	
	ИТОГО	6/0,17

Студенты должны изучить необходимую литературу по курсу в соответствии с программой, особенно обращая внимание на рекомендуемые ссылки. Условие каждого задания следует полностью переписать в тетрадь. Задания должны быть выполнены и написаны четко и разборчиво.

На занятие необходимо принести тонкую тетрадь, ручку, инженерный калькулятор, учебное пособие Суслиной Л. А. «Научные основы инженерной деятельности».

Варианты и объем содержания каждого задания задаются преподавателем. Содержание заданий для каждого занятия берется из пособия [1], ссылки на страницы указаны. По окончанию каждой работы студенты должны представить отчет и подготовить ответы на вопросы.

Занятие 1 [1; стр. 7–17]

Определение среднего арифметического и средней квадратичной ошибки измерений. Расчет систематической ошибки и доверительного интервала.

Варианты	1	2	3	4	5	6	7	8	9	10
Номера заданий [1; стр. 12]	1	2	3	4	5	6	7	8	9	10

Контрольные вопросы

- 1. Какие бывают погрешности и с чем связано их появление?
- 1. 2. Какие действия необходимо предпринять, чтобы система-²ическая ошибка не оказывала существенного влияния на точность измерений искомой величины?
- 3. Каким образом можно уменьшить случайную погрешность?
- 4. Как называются большие случайные ошибки и какие дейфтвия необходимо предпринять при их появлении?
- 5. Назовите характеристики величин, с помощью которых божно оценить величину погрешности эксперимента.
 - 6. Что такое доверительный интервал?
- 6. 7. Как определить отклонение результата от истинного значения?
 - 8. Из чего складывается общая ошибка эксперимента?
- 8. 9. Каким образом можно выяснить, что значение опыта не является промахом?
- 10. Как оценить случайную погрешность?
- 11. Как определяется систематическая погрешность?
- 12. Каким образом выявить систематическую погрешность, оказывающую влияние на результаты эксперимента?
- 13. Можно ли устранить систематическую погрешность на данном уровне значимости, если увеличить число опытов и что надо предпринять для ее устранения?

Занятие 2 [1; стр. 17–36]

Сравнение выборок с использованием параметрических критериев сравнения

Критерии Стьюдента: сравнение с эталонным значением, сравнение сопряженных пар, общий случай применения

Варианты	1	2	3	4	5	6	7	8	9	10
Номера заданий [1; стр. 21]	1	2	3	4	5	6	7	8	9	10
Номера заданий [1; стр. 26]	1	2	3	4	5	6	7	8	9	10
Номера заданий [1; стр. 32]	1	2	3	4	5	6	7	8	9	10

Занятие 3 [1; стр. 36–57]

Сравнение выборок с использованием параметрических критериев сравнения.

Критерий Фишера для сравнения дисперсий двух выборок. Критерий Кохрена для определения значимости максимальной дисперсии. Критерий Пирсона χ^2 (хи-квадрат)

Варианты	1	2	3	4	5	6	7	8	9	10
Номера заданий [1; стр. 37]	1	2	3	4	5	6	7	8	9	10
Номера заданий [1; стр. 48]	1	2	3	4	5	6	7	8	9	10
Номера заданий [1; стр. 53]	1	2	3	4	5	6	7	8	9	10

Контрольные вопросы

- 1. Что значит сравнить две выборки?
- 2. Что показывает функция P(x), описывающая нормальный закон распределения ошибок?
- 3. Что определяет уровень значимости результатов?
- 4. Что означает «нулевая гипотеза»?
- 5. В чем особенность параметрических критериев и при каких условиях они выполнимы?
- 6. Опишите область применения критерия Стьюдента: сравнение сопряженных пар.
- 7. По каким параметрическим критериям можно оценить различие или сходство дисперсий выборок?
- 8. В чем различие области применения критериев Фишера и Кохрена?
- 9. Какой критерий оценивает различное распределение частот появления события? Поясните на примере.

Занятие 4 [1; стр. 57–74]

Сравнение выборок с использованием непараметрических критериев сравнения.

Критерий Вилкоксона. Критерий Ван-дер-Вардена (х-критерий). Проверка по числу знаков отклонений

Варианты	1	2	3	4	5	6	7	8	9	10
Номера заданий [1; стр. 60]	1	2	3	4	5	6	7	8	9	10
Номера заданий [1; стр. 66]	1	2	3	4	5	6	7	8	9	10
Номера заданий [1; стр. 71]	1	2	3	4	5	6	7	8	9	10

Занятие 5 [1; стр. 74–96]

Сравнение выборок с использованием непараметрических критериев сравнения.

Критерий по числу выступающих точек. Серийный критерий. Критерий Колмогорова – Смирнова. Критерий Вилкоксона для сопряженных пар

Варианты	1	2	3	4	5	6	7	8	9	10
Номера заданий	1	2	3	4	5	6	7	8	9	10
[1; стр. 76]	1	2	3	4	3	U	,	O	7	10
Номера заданий	1	2	3	4	5	6	7	8	9	10
[1; стр. 80]	1	2	3	4	3	U	,	O	7	10
Номера заданий	1	2	3	4	5	6	7	8	9	10
[1; стр. 87]	1	2	3	4	3	U	,	0	9	10
Номера заданий	1	2	3	4	5	6	7	8	9	10
[1; стр. 92]	1	2	3	4	3	U	/	0	9	10

Контрольные вопросы

- 1. В чем особенность непараметрических критериев?
- 2. Какие из непараметрических критериев применяются в ситуации близкой к условиям применения критерия Стьюдента: сравнение сопряженных пар?
- 3. Назовите критерии, которые являются исключением из общего правила, т. е. критерии, которые определяют отсутствие различия между двумя выборками в случае, если рабочий критерий больше критического значения.
- 4. Опишите непараметрический критерий, который можно использовать только в случае, если выборки подчиняются закону нормального распределения.
- 5. Перечислите критерии, которые используют приближенные методы, имеющие преимущество в простоте расчетов и кратковременности.
- 6. Опишите область применения критерия по числу выступающих точек.
- 7. Как определяются границы серии в расчетах с применением Серийного критерия?
- 8. Как определяется рабочий критерий Колмогорова Смирнова?
- 9. Учитываются ли разности равные нулю в расчетах с применением критерия Вилкоксона для сопряженных пар.

Занятие 6 и 7 [1; стр. 97–117]

Обработка результатов эксперимента с помощью регрессионного анализа, с использованием метода наименьших квадратов.

Определение коэффициентов функциональной зависимости

для нелинейных функций, линейных функций и многофакторных функций

Варианты	1	2	3	4	5	6	7	8	9	10
Номера заданий [1; стр. 104]	1	2	3	4	5	6	7	8	9	10
Номера заданий [1; стр. 110]	1	2	3	4	5	6	7	8	9	10
Номера заданий [1; стр. 115]	1	2	3	1	2	3	1	2	3	1

Контрольные вопросы

- 1. Назовите ограничения в применении регрессионного анализа.
- 2. Что означает составить математическую модель эксперимента?
- 3. Каким образом находят коэффициенты регрессионного уравнения?
- 4. Что характеризует коэффициент аппроксимации?
- 5. Как определить коэффициенты парной зависимости вида $y = b_0 + b_1 x$? Есть ли готовые решения уравнения?
- 6. Как определить коэффициенты парной зависимости вида $y = b_0 + b_1 x + b_2 x^2$? Есть ли готовые решения уравнения?
- 7. Каким образом можно сгладить ряд с большим разбросом данных относительно средней?

Занятие 8/1

Планирование и полный расчет дробного факторного эксперимента. Техника проведения эксперимента методом крутого восхождения.

Задание к занятию 8 выдается преподавателем индивидуально.

Занятие 8/2 [1; стр. 118–123] Однофакторный дисперсионный анализ

Варианты	1	2	3	4	5	6	7	8	9	10
Номера заданий [1; стр. 121]	1	2	3	4	5	1	2	3	4	5

Занятия 9 [1; стр. 123–135]

Многофакторный дисперсионный анализ. Планирование экспериментов в виде латинских и греко-латинских квадратов

Варианты	1	2	3	4	5	6	7	8	9	10
Номера заданий [1; стр. 129]	1	2	3	4	5	6	7	8	9	10

Контрольные вопросы

- 1. Назовите область применения дисперсионного анализа.
- 2. Назовите условия, ограничивающие применение дисперсионного анализа.
- 3. Каким образом можно организовать исследования при помощи однофакторного дисперсионного анализа?
- 4. Каким образом можно организовать исследования при помощи многофакторного дисперсионного анализа?
- 5. Чем отличается латинский от греко-латинского квадрата?
- 6. Назовите условия составления латинских и греко-латинских квадратов.

Учебно-методическое и информационное обеспечение дисциплины

Основная литература

1. Суслина Л. А. Научные основы инженерной деятельности: учебное пособие для студентов специальности 130405 «Обогащение полезных ископаемых» очной и заочной формы обучения. – Кемерово: КузГТУ, 2013.

$\underline{http://library.kuzstu.ru/meto.php?n=91125\&type=utchposob:common}$

- 2. Суслина Л. А. Научные основы инженерной деятельности: учебное пособие [Электронный ресурс]: для студентов специальности 130405 «Обогащение полезных ископаемых» / Л. А. Суслина. Электрон. дан. Кемерово: КузГТУ, 2012. 1 электрон. опт. диск (CD-ROM); зв.; цв.; 12 см. Систем. требования: Pentium IV; ОЗУ 8 Мб; Windows 2003; (CD-ROM-дисковод); мышь. Загл. с экрана.
- $\underline{http://library.kuzstu.ru/meto.php?n=90694\&type=utchposob:common}$
 - 3. Суслина, Л. А. Научные основы инженерной деятельности: ма-

териалы к лекционному курсу (Научные основы инженерной деятельности.ppt) [Электронный ресурс]: для студентов очной и заочной формы обучения специальности 130405 «Обогащение полезных ископаемых»/ Л. А. Суслина. — Электрон. дан. — Кемерово: ГУ КузГТУ, 2010. — 1 электрон. опт. диск (CD-ROM); зв.; цв.; 12 см. — Систем. требования: Pentium IV; ОЗУ 8 Мб; Windows 95; (CD-ROM-дисковод); мышь. - Загл. с экрана.

Дополнительная литература

- 1. Барский Л. А. Системный анализ в обогащении полезных ископаемых / Л. А. Барский, В. З. Козин. М.: Недра, 1978.
- 2. Барский Л. А. Кибернетические методы в обогащении полезных ископаемых / Л. А. Барский, Ю. Б. Рубинштейн. М.: Недра, 1970.
- 3. Шупов Л. П. Прикладные математические методы обогащения полезных ископаемых. М.: Недра, 1982.
- 4. Основы научных исследований / Е. Г. Баранов, В. А. Бунько, О. В. Колоколов, А. И. Денисенко, А. П. Жендринский. Киев–Донецк: Вища школа, 1984.
- 5. Основы научных исследований / под ред. В. И. Крутова, В. В. Попова. М.: Высш. шк., 1989.
- 6. Шевелев Ю. А. Основы научных исследований: учеб. пособие / Ю. А. Шевелев, В. И. Удовицкий; КузГТУ. Кемерово, 1995.

Методическая литература

- 1. Суслина, Л. А. Научные основы инженерной деятельности: [Электронный ресурс] методические указания к лабораторным работам для студентов очной и заочной формы обучения специальностей 130405 «Обогащение полезных ископаемых» / Л. А. Суслина. Электрон. дан. Кемерово: ГУ КузГТУ, 2011. http://library.kuzstu.ru/meto.php?n=1756
- 2. Суслина, Л. А. Научные основы инженерной деятельности: [Электронный ресурс] методические указания по самостоятельной работе для студентов очной и заочной формы обучения специальностей 130405 «Обогащение полезных ископаемых» / Л. А. Суслина. Электрон. дан. Кемерово: ГУ КузГТУ, 2010. Систем. требования: Pentium IV; ОЗУ 8 Мб; Windows 95; мышь. Загл. с экрана. http://library.kuzstu.ru/meto.php?n=4632
- 3. Клейн М. С. Научные основы инженерной деятельности программа, методические указания и контрольные задания для студентов специальности 090300 (130405) «Обогащение полезных ископаемых» заочной формы обучения / М. С. Клейн, Л. А. Суслина. Электрон. дан. Кемерово: ГУ КузГТУ, 2012 http://library.kuzstu.ru/meto.php?n=2224