Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кузбасский государственный технический университет имени Т. Ф. Горбачева»

Кафедра металлорежущих станков и инструментов

ПОЛИМЕРНЫЕ МАТЕРИАЛЫ. КЛАССИФИКАЦИЯ, СТРОЕНИЕ, СВОЙСТВА И ПРИМЕНЕНИЕ

Методические указания к лабораторной работе по дисциплинам «Материаловедение», «Основы материаловедения» для студентов технических направлений всех форм обучения

Составители К. П. Петренко Е. М. Додонова

Утверждены на заседании кафедры Протокол № 7 от 14.12.2016 Рекомендованы к печати учебно-методической комиссией направления 27.03.02 Протокол № 7 от 14.12.2016 Электронная копия находится в библиотеке КузГТУ

KEMEPOBO 2016

1. ЦЕЛЬ РАБОТЫ

Изучение структуры, строения, классификации, свойств и области применения полимерных материалов.

2. ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Полимерами называют вещества с большой молекулярной массой (от 5000 до 1000000), у которых молекулы состоят из *мономеров* – макромолекул с ковалентными связями.

2.1. Структура и строение полимеров.

Под структурой полимеров понимают взаимное расположение в пространстве макромолекул, образующих полимер. Общая структура полимера складывается из молекулярной и надмолекулярной структур — взаимной укладки молекул в полимерном веществе.

В соответствии с молекулярной структурой полимеры делятся на три группы (рис. 1):

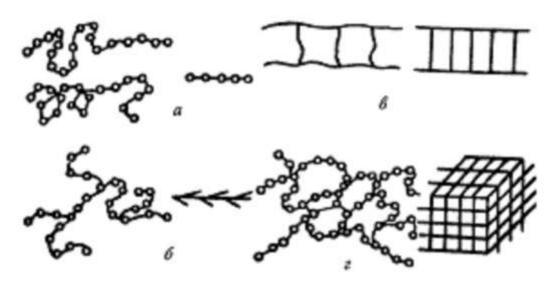


Рис. 1. Форма макромолекул полимеров различной топологии: a — линейная; δ — разветвленная; ϵ — лестничная; ϵ — пространственная сетчатая

— *линейные полимеры* — соединения, макромолекулы которых представляют собой длинные цепи, связанные между собой Ван-дер-ваальсовыми силами молекулярного взаимодействия;

- разветвленные (привитые) полимеры, образованные цепями с боковыми ответвлениями (число ответвлений и их длина различны); к ним относятся гребнеобразные, звездообразные полимеры;
- «сшитые» (сетчатые) полимеры состоят из макромолекул, образующих пространственную сетку, охватывающую весь образец; среди них различают густо- и редкосшитые, резко различающиеся по своим свойствам; к сшитым относят лестничные полимеры.

Надмолекулярная структура может быть:

- *кристаллической* (молекулы укладываются в порядке, соответствующем определённой кристаллической решётке);
- *пачечной* (на больших участках главные цепи соседних молекул располагаются параллельно).

Строение полимеров. В зависимости от размещения групп вдоль главной оси полимеры делятся на:

- *регулярные* (с упорядоченным расположением групп);
- нерегулярные (с неупорядоченным расположением групп).

2.2. Классификация полимеров

Существует несколько видов классификации полимерных материалов (рис. 2):

По химическому составу полимерные материалы делятся на органические, элементоорганические и неорганические.

Органическими полимерами являются смолы и каучуки. Молекулярная цепь этих материалов образована атомами углерода с возможными примесями серы, фосфора, хлора и др.

Элементоорганические соединения содержат в составе основной цепи неорганические атомы, сочетающиеся с органическими. К этой группе относятся кремнийорганические соединения.

К неорганическим полимерам принадлежат керамика, слюда, асбест, силикатные стёкла. Их основу составляют оксиды кремния, алюминия, магния, кальция и др.

По фазовому состоянию полимерные материалы подразделяются на аморфные и кристаллические.

Рис. 2. Общая классификация полимеров

Аморфные полимеры построены из цепных молекул, собранных в пачки или глобули (свёрнутые в клубки цепи), являющиеся структурными элементами.

Кристаллические полимеры образованы кристаллами правильной формы, которые получаются путём перестройки внутри пачки в определённом интервале температур.

По механизмам поляризации молекул полимеры делятся на полярные и неполярные (рис. 3).

Рис. 3. Примеры молекул полярного и неполярного соединений

Неполярные полимеры (нейтральные диэлектрики) состоят из неполярных молекул, у которых центры тяжести положительного и отрицательного зарядов совпадают, их электрический момент равен нулю. Свойства этих материалов мало изменяются под воздействием температуры; они, как правило, морозоустойчивы. Примером практически неполярных диэлектриков, применяемых в качестве электроизоляционных материалов, являются углеводороды, нефтяные электроизоляционные масла, полиэтилен, полистирол и др.

Полярные (дипольные) полимеры состоят из полярных молекул, обладающих электрическим моментом. В таких молекулах из-за их асимметричного строения центры масс положительных и отрицательных зарядов не совпадают. При замещении в неполярных полимерах некоторой части водородных атомов другими атомами или неуглеводородными радикалами получаются полярные вещества. Полярные полимеры обладают повышенной жесткостью и теплостойкостью, высокой адгезионной способностью, пониженной морозостойкостью. К ним относятся фенолоформальдегидные и эпоксидные смолы, кремнийорганические соединения, хлорированные углеводороды и др.

По физико-механическим свойствам полимеры классифицируют на пластики (пластмассы) и эластики (эластомеры).

Пластики бывают жесткие, полужесткие и мягкие.

Жесткие пластики – твердые упругие материалы аморфной структуры с высоким модулем упругости (свыше 1000 МПа) и малым удлинением при разрыве, сохраняющие свою форму при внешних напряжениях в условиях нормальной или повышенной температуры.

Полужесткие пластики – твердые упругие материалы кристаллической структуры со средним модулем упругости (выше 400 МПа), высоким относительным и остаточным удлинением при разрыве, причем остаточное удлинение обратимо и полностью исчезает при температуре плавления кристаллов.

Мягкие пластики — мягкие и эластичные материалы с низким модулем упругости (около 20 МПа), высоким относительным удлинением и малым остаточным удлинением, причем обратимая деформация исчезает при нормальной температуре.

Эластики – мягкие эластичные материалы с низким модулем упругости (ниже 20 МПа), поддающиеся значительным деформациям при растяжении, причем вся деформация или большая ее часть исчезает при нормальной температуре с большой скоростью (практически мгновенно).

По строению полимерной цепи различают полимеры карбоцепные и гетероцепные.

В карбоцепных полимерах цепь состоит только из атомов углерода.

B гетероцепных в состав цепи кроме углерода входят кислород, азот и другие элементы.

По отношению к нагреву полимеры делятся на термопластичные и термореактивные.

Термопластичные способны многократно размягчаться при нагреве и твердеть при охлаждении без изменения свойств.

Термореактивные при нагреве остаются твёрдыми вплоть до полного термического разложения.

2.3. Получение полимеров

Полимеры получают в результате реакций полимеризации и поликонденсации (рис. 4).

Полимеризация — процесс соединения друг с другом большого числа молекул мономера за счет кратных (C = C, C = O и др.) связей или раскрытия циклов, содержащих гетероатомы (O, N, S). При полимеризации обычно не происходит образования низкомолекулярных побочных продуктов, вследствие чего полимер и мономер имеют один и тот же элементный состав.

Поликонденсация – процесс соединения друг с другом молекул одного или нескольких мономеров, содержащих две и более функциональные группы (ОН, СО, СОС, NHS и др.), способные к химическому взаимодействию, при котором происходит отщепление низкомолекулярных продуктов. Полимеры, получаемые поликонденсационным способом, по составу не соответствуют исходным мономерам.

$$n \text{ CH}_2 = \text{CH}_2 \xrightarrow{\text{KaT.}} (-\text{CH}_2 - \text{CH}_2 -)_n$$

$$n \text{ CH}_2 = \text{CH} \xrightarrow{\text{KaT.}} (-\text{CH}_2 - \text{CH}_-)_n$$

$$\text{CH}_3 \qquad \text{CH}_3$$

$$nponuneh \qquad nonunponuneh$$

$$a)$$

$$H_1 - N - \text{CH}_2 - \text{C} \xrightarrow{\text{OH}} + H_1 - N - \text{CH}_2 - \text{C} \xrightarrow{\text{OH}} + H_1 - N - \text{CH}_2 - \text{C} \xrightarrow{\text{OH}} + \dots \Rightarrow$$

$$H_1 - N - \text{CH}_2 - \text{C} \xrightarrow{\text{OH}} + H_1 - N - \text{CH}_2 - \text{C} \xrightarrow{\text{OH}} + \dots \Rightarrow$$

$$H_1 - N - \text{CH}_2 - \text{C} \xrightarrow{\text{OH}} + H_1 - N - \text{CH}_2 - \text{C} \xrightarrow{\text{OH}} + \dots \Rightarrow$$

$$H_1 - N - \text{CH}_2 - \text{C} \xrightarrow{\text{OH}} + H_1 - N - \text{CH}_2 - \text{C} \xrightarrow{\text{OH}} + \dots \Rightarrow$$

$$H_1 - N - \text{CH}_2 - \text{C} \xrightarrow{\text{OH}} + H_1 - N - \text{CH}_2 - \text{C} \xrightarrow{\text{OH}} + \dots \Rightarrow$$

$$H_2 - N - \text{CH}_3 - \text{C} - N - \text{CH}_2 - \text{C} - N - \text{CH}_2 - \text{C} - \dots + n + n + 2} \xrightarrow{\text{O}}$$

Рис. 4. Реакции полимеризации (a) и поликонденсации (δ)

2.4. Пластмассы

Пластические массы (пластмассы) — это искусственные материалы, основой которых (связующим) являются полимеры. К особенностями пластмасс относят малую плотность, низкую теплопроводность, значительное тепловое расширение, хорошие электроизоляционные свойства, высокую химическую стойкость, фрикционные и антифрикционные свойства. Отличительной особенностью этих материалов являются хорошие технологические свойства.

Классификация пластмасс.

По структуре пластмассы делят на гомогенные (однородные) и гетерогенные (неоднородные). Структура пластмасс зависит от введения в их состав наряду с полимером других компонентов.

По составу пластики подразделяют на ненаполненные, газонаполненные, наполненные.

Ненаполненные пластмассы состоят из полимера, иногда из красителя, пластификатора и стабилизатора.

В газонаполненные кроме указанных материалов входят также воздух или другой газ путем использования добавок газообразующих или воздухововлекающих веществ.

Наполненные пластики состоят из полимера и наполнителя. Эти материалы наиболее часто используют для изготовления пластмассовых строительных материалов и изделий.

По составу пластики делятся на одно- и многокомпонентные. Состав *однокомпонентных* пластмасс представлен только полимером.

В состав многокомпонентных пластмасс входят:

- наполнитель прерывистая фаза, прочно сцепленная со связующим; как правило, инертное вещество, которое вводят для повышения твёрдости и придания особых свойств; по виду наполнителя пластмассы подразделяют на:
- порошковые (наполнитель древесная мука, графит, тальк и др.);
 - волокниты (очёсы хлопка и льна, стекло- и асбоволокно);
- слоистые с листовым наполнителем (бумага гетинакс,
 ткань текстолит, асбо- и стеклоткань и др.);

- газонаполненные (пено-, поро- и сотопласты; наполнитель воздух или нейтральные газы).
- связующее матрица, объединяющая в единое целое все составные части: смолы, цемент, стекло;
- пластификаторы применяют для улучшения технологических и эксплуатационных свойств (стеарин, олеиновая кислота и др.);
- отвердители (сшивающие агенты) амины вводят с целью создания химических связей между молекулами полимера;
- катализаторы перекисные соединения вводят для отверждения, т. е. создания межмолекулярных связей;
- смазывающие вещества используют для увеличения текучести;
- стабилизаторы повышают стойкость к воздействию тепла, света, кислорода и т. д.

По назначению пластмассы подразделяют на группы:

- конструкционные, отличающиеся высокими механическими свойствами (полистирол, фенопласты, стеклопластики и др.);
- электроизоляционные, обладающие хорошими диэлектрическими свойствами (полиэтилены, полистирол, фторопласты, гетинакс, текстолит и др.);
- химически стойкие пластмассы (фторопласт-4, винипласт, асбоволокниты и др.);
- фрикционные пластмассы, обладающие в условиях сухого трения высокими значениями коэффициента трения и износостойкостью (асбоволокниты, асботекстолиты и др.);
- *антифрикционные*, имеющие малый коэффициент трения и высокую износостойкость (фторопласт-4, капрон, лавсан и др.);
- *тепло- и звукоизоляционные* пластмассы, отличающиеся низким коэффициентом теплопроводности и высокой звукопоглощающей способностью (пенополистирол, пенополиуретан и др.);
- *светотехнические и оптические* пластмассы устойчивы к действию света и обладают высокими оптическими свойствами (полиметилакрилат и др.);
- *декоративные* применяют для отделки мебели транспортных салонов и т. п. (гетинакс, полистирол и др.)

Данная классификация в значительной мере условна, т. к. одна и та же пластмасса может использоваться в разном качестве.

В зависимости от отношения связующего к повторному нагреву пластмассы, подобно полимерам, делятся на термопласты (термопластичные пластмассы) и реактопласты (термореактивные пластмассы).

По совокупности свойств пластические массы делятся на: термопласты, реактопласты, газонаполненные пластмассы и эластомеры (рис. 2).

2.4.1. Термопласты

Термопласты — это материалы, обладающие способностью размягчаться при повышении температуры, превращаясь в вязкую жидкость, и затвердевать при понижении температуры, сохраняя свои первоначальные свойства. В нагретом состоянии им придаётся под давлением определенная форма, сохраняемая при охлаждении. Основа термопластов — полимеры с линейной или разветвлённой структурой.

Для большинства термопластов характерны следующие особенности: предел прочности составляет 10–100 МПа, температура эксплуатации не превышает 60–200 °С. Более прочными считаются кристаллические термопласты, помимо этого, они хорошо сопротивляются усталости, их долговечность выше, чем у металлов.

Термопластические пластмассы делят:

- по совокупности физических и технологических свойств
 на термопласты общетехнического и инженерно-технического назначения;
 - *по строению* на полярные и неполярные (рис. 2).

К неполярным термопластам (рис. 2) относят полиэтилен высокого (ПЭВД) и низкого (ПЭНД) давления, полипропилен, полистирол и фторопласт-4.

Полиэтилен — продукт полимеризации бесцветного газа этилена, относящийся к кристаллизующимся полимерам. Молекулы полиэтилена имеют линейную структуру. Обладает весьма высокой химической стойкостью. Заготовки из этого материала получают методами формования (экструзией и раздувом) и лить-

ём под давлением. Свойства и область применения приведены в табл. 1.

Полипропилен является продуктом полимеризации пропилена, и представляет собой аморфно-кристаллический неполярный термопласт. Перерабатывается литьём под давлением и формованием. Хорошо сваривается. Физиологически нейтрален, что определило область его применения (табл. 1).

Полистирол получают путём полимеризации мономерного стирола. Это твёрдый аморфный полимер. Характеризуется высокими диэлектрическими показателями (табл. 1); устойчив по отношению к щелочам и кислотам, не растворяются в воде, спиртах, эфирах и др.; длительно сохраняют свойства при воздействии гамма-излучения. Заготовки получают литьём под давлением и экструзией

Фторопласт-4 (политетрафторэтилен) является аморфнокристаллическим полимером. Стоек к действию кислот и щелочей; высококачественный диэлектрик (табл. 1). При переработке возникают трудности вследствие низкой пластичности.

К полярным термопластам (рис. 2) принадлежат: фторопласт-3, органическое стекло, поливинилхлорид, полиформальдегид и другие материалы.

Фторопласт-3 (полимер трифтохлорэтилена) линейный аморфно-кристаллический полимер белого цвета. Обладает повышенной плотностью, твёрдостью и высокими механическими свойствами (табл. 1), хорошей устойчивостью в агрессивных средах, легко перерабатывается методами прессования, литья под давлением и др.

Органическое стекло (полиметилакрилат) — аморфный бесцветный прозрачный полимер на основе сложных эфиров акриловой и метакриловой кислот. Отличается высокой атмосферостойкостью, устойчивостью к действию кислот; низкой поверхностной твёрдостью (табл. 2).

Поливинилхлорид (ПВХ) (винипласт, пластикат) — линейный аморфный полимер. Имеет хорошие электроизоляционные характеристики, стоек по отношению ко многим средам: воде, кислотам, маслам и др.; обладает высокой прочностью и упругостью, однако, при длительной эксплуатации прочность снижается (табл. 1).

Полиформальдегид – простой полиэфир – линейный полимер, обладающий чрезвычайно плотной упаковкой кристаллов, вследствие чего имеет высокую твёрдость, ударную вязкость и упругость (табл. 1). Материал устойчив к воде, маслам, бензину.

2.4.2. Реактопласты

Термореактивные материалы (реактопласты) при нагревании переходят в неплавкое, нерастворимое твердое состояние и необратимо утрачивают свойства плавиться. Это многокомпонентные материалы, в состав которых входят смолы, наполнители, пластификаторы, ускорители или замедлители, отвердители, красители, растворители.

Основной компонент термореактивных пластмасс – смолы (высокомолекулярные органические соединения), вследствие чего реактопласты отличаются повышенной прочностью, способны работать при повышенных температурах до 350 °C. В производстве используют следующие виды смол:

- фенолформальдегидные бакелитовые (резольные смолы и новолаки);
 - эпоксидные,
 - кремнийорганические (силиконы);
 - полиэфирные (наиболее часто глифталевые).

Реактопласты классифицируют в зависимости от формы частиц наполнителя. Их подразделяют на порошковые, волокнистые и слоистые пластмассы (рис. 2).

Пластмассы с порошковыми наполнителями.

Пластмассы этой группы изготавливают на основе новолачных, кремний-органических и других смол в смеси с древесной мукой, асбестом, кварцем, слюдой, графитом. Готовые изделия получают методом прессования. Пресс-порошки отличаются изотропностью, удовлетворительными электроизоляционными свойствами, химической и водостойкостью, невысоким уровнем механических свойств (табл. 2).

Таблица 1

Свойства и область применения термопластов

Наименование	ρ , $\kappa\Gamma/M^3$	T, °C	$σ_{\rm B}$, ΜΠ a	ρ ₁ , Ом ·м	Область применения
ПЭВД	920–930	-130-110	10–17	10^{18}	Трубы, литые и прессованные несиловые
ПЭНД	949–955	-160-100	18–45	10 ¹⁸	детали, плёнки; защитные покрытия
Полипропилен	920–930	-20-150	30–35	$10^{17} - 10^{18}$	Аналогично полиэтиленам, также в бытовой
					технике: контейнеры, посуда и др.
Полистирол	1050–1080	-20-90	37–48	$10^{16} - 10^{18}$	Товары бытового назначения: игрушки, па-
					нели приборов и т. п.; в электротехнике – в
					производстве конденсаторов
Фторопласт-4	1900–2200	-270-250	15–35	10 ¹⁹	Электрорадиотехнические детали, трубы,
					вентили, манжеты и др.
Фторопласт-3	2090–2160	-195-150	30–45	$1,2 \cdot 10^{16}$	Трубы, клапаны, шланги, защитные покры-
					тия металлов, низкочастотные диэлектриче-
					ские изделия
Поливинилхлорид	1350–1430	-40-90	40–120	$10^{13} - 10^{15}$	Уплотнители пневмо- и гидросистем, изо-
					ляция проводов, кабелей и др.
Полиформальдегид	1470	-60-130	70	10^{12}	Зубчатые колёса, подшипники, клапаны и
					другие детали машин
Полиметилакрилат	1200	-60-60	63–120	10 ¹¹ -10 ¹²	В авиастроении: стекла вертолётов и др.,
(оргстекло)					светотехнические детали, линзы и т.п.

Примечание: ρ , $\kappa \Gamma/M^3$ – плотность; T, C – рабочая температура; σ_B , $M\Pi a$ – предел прочности на растяжение; ρ_1 , $OM \cdot M$ – удельное электросопротивление.

Пресс-материал волокнита является грубой и жесткой массой, из которой нельзя прессовать мелкогабаритные, тонкостенные детали. Свойства и применение приведены в табл. 2.

Асбоволокниты содержат наполнитель – асбест – волокнистый минерал, расщепляющийся на тонкое волокно; связующим служит, как правило, фенолформальдегидная смола. Преимуществом асбоволокнитов является повышенная теплостойкость (табл. 2), ударная прочность, устойчивость к кислым средам и фрикционные свойства; как диэлектрики их применяют для низкочастотных токов.

Стекловолокниты — это композиция, состоящая из связующего — синтетической смолы и стекловолокнистого наполнителя. Стекловолокно получается путем продавливания расплавленной стекломассы через фильеры (отверстия в дне электропечи). Стекловолокно негорюче, устойчиво к действию ультрафиолетовых лучей, химически стойко, стабильных размеров. Наполнитель является армирующим элементом и воспринимает основные нагрузки при работе стеклопластика. Свойства этих материалов (табл. 2) зависят от длины волокна и состава стекла.

Слоистые пластики

Слоистые пластики состоят из связующего и листового наполнителя, что определяет их слоистую структуру и анизотропию свойств. Материалы выпускают в виде труб, листов, плит и других заготовок, из которых механической обработкой производят детали. Слоистые пластики получили широкое применение как силовые конструкционные материалы. В эту группу входят: текстолит, гетинакс, древесно-слоистые пластики, асбо- и стеклотекстолит, СВАМ.

Текстолит изготавливают на основе фенолформальдегидных смол с наполнителем из листов хлопчатобумажной ткани (шифон, бязь и др.).

Материал обладает хорошей способностью поглощать вибрационные нагрузки. Текстолит имеет низкий коэффициент трения, высокую износостойкость. Недостатком является низкая рабочая температура (табл. 2).

Свойства и область применения реактопластов

Наименование	ρ,	Тпред.,	$\sigma_{_{\rm B}},$	δ,	Область применения	
	$K\Gamma/M^3$	°C	МПа	%		
Порошковые	1400	110	50–100	0,5	Несиловые изделия электротехнического назначения;	
					ремонт изношенных деталей путём заливки смолой	
Волокнит	1400	110	30–60	2	Детали общетехнического назначения: втулки, фланцы,	
					направляющие и т. п.	
Асбоволокнит	1950	200	_	3	Тормозные устройства, кислотоупорные ванны, трубы	
					и др.	
Стекловолокнит	1800	280	80–500	2	Силовые электротехнические детали, деталей машин:	
					золотники, уплотнения и т. д.	
Гетинакс	1350	150	80–100	2	Облицовка транспортных средств: вагонов, кабин; элек-	
					тротехнические изделия	
Текстолит	1400	125	65–100	2	Детали машин: корпусные, шестерни, подшипники и др.	
Асботекстолит	1600	190	55	_	Теплоизоляционный материал; лопатки бензонасосов,	
					фрикционные диски, накладки, тормозные колодки и др.	
ДСП	1350	200	180–300	_	Аналогично текстолитам	
Стеклотекстолит	1750	300	250-600	_	Крупные детали машин, применяемые в судо-,	
					авиастроениии и радиотехнике	
CBAM	1900	200	350–1000		Силовые изделия и несиловые изделия: корпуса, трубы,	
					кожухи, ограждения и др.	

Примечание: ρ , $\kappa r/m^3$ – плотность, $T_{пред}$, ${}^{\circ}C$ – предельная рабочая температура; $\sigma_{\text{в}}$, МПа – предел прочности на растяжение; δ , % – относительное остаточное удлинение.

Гетинакс — это материал, представляющий собой бумагу разных сортов, пропитанную модифицированными фенолформальдегидными смолами. Устойчив к действию химикатов, растворителей, пищевых продуктов, что определило область его применения (табл. 2). Различают электротехнический и декоративный гетинакс.

Асботекстолит производят на основе кремнийорганических смол с наполнителем из асбестовых тканей. Выдерживает кратковременно высокие температуры, поэтому применяется в качестве теплоизоляционного материала. Асботекстолит обладает хорошими антифрикционными и механическими свойствами (табл. 2).

Древесно-слоистые пластики (ДСП) изготавливают из древесного шпона, пропитанного термореактивным связующим и спрессованного в виде плит. ДСП имеют высокие физикомеханические свойства (табл. 3), низкий коэффициент трения, и применяется в узлах трения вместо деталей из цветных металлов. Недостатком является гигроскопичность.

В стеклотекстолитах в качестве наполнителя применяют стеклянные ткани, которые по виду ткацкого переплетения подразделяются на полотняные или гарнитуровые, сатиновые или атласные и кордовые ткани. Для связующего используют все виды смол. При получении изделий усиленные нити основы укладываются в направлении, совпадающем с деформацией, и воспринимают растягивающие нагрузки. При многослойной перекрестной укладке пропитанных тканей можно получить равнопрочный стеклопластик. Свойства и применение приведены в табл. 2.

СВАМ – *стекловолокнистый анизотропный материал*, в котором стеклянные нити сразу по выходе из фильер, склеиваются между собой в виде стеклянного шпона и затем укладываются, как в фанере. Связующие могут быть различными. СВАМ является конструкционным материалом с высокими механическими свойствами (табл. 2). Стеклопластики обладают высокой демпфирующей способностью, хорошо работают при вибрационных нагрузках.

2.4.3. Газонаполненные пластмассы

Структура газонаполненных пластмасс (вспененных полимеров) состоит из двух фаз: связующей и газовой. Связующая фаза представляет пластмассу, которая образует стенки ячеек и пор. Газовая фаза является наполнителем. Такое строение обеспечивает особые свойства этих материалов: высокую тепло- и звукоизолирующую способность, весьма низкую плотность.

Получение вспененных материалов осуществляется как путём вспенивания полимерной заготовки в состоянии высоко-эластичной деформации, так и введением в исходную композицию заполненных газом сферических частиц (порофоров) из стекла, полимеров, керамики и др. В производстве используют термопласты (полистирол, поливинилхлорид, полиэтилен и др.) и реактопласты (фенолформальдегидную, эпоксидную, кремнийорганическую и другие смолы).

Газонаполненные пластмассы широко применяют для звуко- и теплоизоляции приборов, кабин, контейнеров, холодильников; используются в транспортном машиностроении для заполнения сидений и т. п.

Среди вспененных полимеров выделяют: пено-, поро- и сотопласты (табл. 3).

Таблица 3 Свойства газонаполненных пластиков

Наименование	ρ, кг/м ³	Т _{раб.} ,°С	σ _в , МПа
Пенополистирол	25 - 200	-60 - 60	0,7-4,2
Пенополивинилхлорид	50 - 200	-60 - 60	-60 - 60
Пенополиуретан	60 - 200	-60 - 200	1,8-2,8
Поролон	30 - 70	-40 - 100	0,1
Пенофенопласт	200	-60 - 150	1,2-2
Пенополиэпоксид	200 - 1000	-60 - 200	_

Примечание: ρ , кг/м³ – кажущаяся плотность; $T_{paб.}$, ${}^{\circ}C$ – рабочая температура; σ_B , МПа – предел прочности на растяжение.

Пенопласты представляют собой материалы с замкнутой пористой ячейкой, в которых газообразный наполнитель, находящийся в ячейках, изолирован от атмосферы. Замкнуто-ячеистая структура обеспечивает хорошую плавучесть и высокие теплоизоляционные свойства. Прочность пенопластов невелика и зависит от плотности материала.

Поропласты — губчатые материалы с открыто-пористой структурой, вследствие чего присутствующие в них газопористые включения свободно сообщаются друг с другом и с окружающей атмосферой. Выпускаются эластичными. Отличаются высокой способностью к поглощению влаги — до 700 %.

Сотопласты изготавливают из тонких листов, которые первоначально гофрируют, а затем склеивают в виде пчелиных сот. Материалом для них служат ткани, пропитанные связующим на основе смол. Отличаются повышенной тепло- и, особенно, звукоизоляцией.

2.5. Эластомерные материалы

Эластомерными материалами (эластомерами) называют полимеры, обладающие способностью к значительным обратимым (высоко-эластичным) деформациям. К ним относятся каучуки и резины (рис. 2).

Каучуки представляют собой гибкоцепные полимеры различной химической природы. Существуют *натуральные* каучуки, получаемые из млечного сока каучуконосных деревьев — латекса и *синтетические* каучуки, среди которых выделяют: бутадиеновый, бутадиен-стирольный, бутилкаучук, хлорпреновый, бутадиен-нитрильный, кремнийорганический каучуки.

Эти материалы имеют низкие прочностные свойства и значительную долю необратимой составляющей в общей деформации, поэтому в чистом виде в качестве технических изделий не применяются, а используются в качестве исходного сырья для получения резины.

Резины — продукты вулканизации каучуков, являющиеся многокомпонентными материалами. Вулканизация — это процесс химического взаимодействия каучука с серой. В процессе вулканизации (рис. 5) между макромолекулами образуются попереч-

ные связи различной природы («сшивание»), и формируется единая пространственная сетка, обеспечивающая высокий уровень прочностных и эластичных свойств (резинам свойственна обратимая деформация до 1000 %).

$$2[-CH_{2}-CH-CH_{2}]_{n} + nS \rightarrow \begin{bmatrix} -CH_{2}-CH-CH_{2}-\\ S\\ -CH_{2}-CH-CH-CH_{2}-\\ S\\ \end{bmatrix}_{n}$$

Рис. 5. Процесс вулканизации

В зависимости от количества вводимой серы получается различная частота сетки полимера. При введении 1–5 % серы образуется редкая сетка, и резина получается высокоэластичной. С увеличением процентного содержания серы сетчатая структура становится более частой, резина — более твёрдой, а при максимально возможном насыщении (до 30 %) получают эбонит.

В состав резины, помимо каучука, входят:

- *вулканизирующие агенты* (основной вулканизирующий элемент сера, кроме того, тиурам, оксиды цинка или магния и др.);
 - наполнители (сажа, тальк, мел и др.)
- противостарители- мягчители (стеарин, парафин, воск и др.);
 - красители (охра, ультрамарин и т. п.) и др.

Технология резины включает в себя следующие операции:

- подготовка ингредиентов;
- смешивание ингредиентов;
- получение полуфабриката (сырой резины);
- изготовление заготовок требуемой формы методами прессования и литья под давлением;
 - вулканизация.

В процессе эксплуатации резиновые изделия подвержены различным видам *старения*, в результате которого происходят необратимые изменения свойств. Наиболее сильно ухудшают свойства колебания температуры, ионизирующее и ультрафиолетовое излучение, воздействие вакуума.

Резины классифицируются по эксплуатационным признакам на две группы (рис. 2): общего и специального назначения (табл. 4).

Таблица 4 Свойства некоторых резин

Наименование	ρ, κΓ/m ³	Т _{раб.} ,°С	$σ_{\rm B}$, ΜΠ a	δ, %
Общего назначения	900–944	-77-150	13–34	10–40
Маслобензостойкие	943–2140	-60-60	3,2–33	10–40
Теплостойкие	1700–1200	250–325	35–80	4
Износостойкие	_	<130	21–60	2–10

Примечание: ρ , $\kappa r/m^3$ – плотность; $T_{\text{раб.}}$, $^{\circ}C$ – рабочая температура; σ_B , МПа – предел прочности на растяжение; δ – относительное остаточное удлинение.

К группе *резин общего назначения* относят вулканизаты неполярных каучуков — натурального, бутадиенового, бутадиеноторольного, изопренового и их комбинаций. Эти материалы работают в обычных условиях окружающей среды. Из них изготавливают транспортёрные ленты, амортизаторы, обувь и другие изделия бытового назначения. Свойства приведены в табл. 4.

Среди *резин специального назначения* различают: морозо-, теплостойкие, износо-, маслобензо-, светоозоностойкие, электротехнические и другие. В состав каждой из резин вводятся компоненты, обеспечивающие определённый комплекс свойств в заданных условиях эксплуатации (табл. 4).

Износостойкие резины, получаемые на основе полиуретановых каучуков, обладают высокой прочностью, эластичностью, сопротивлением к истиранию, стойкостью к атмосферному воздействию. Из них делают автомобильные шины, конвейерные ленты и т. п.

Электротехнические резины, используемые для изготовления изоляции токопроводящей жилы проводов и кабелей, специальных перчаток и обуви, изготавливают на основе неполярных каучуков.

Маслобензостойкие резины получают на основе хлоропренового, полисульфидного и бутадиеннитрильного каучуков. Изделия из этих материалов работают в контакте с бензином, топ-

ливом, маслами в интервале температур от -30 °C до +130 °C. Из них делают рукава, уплотнительные прокладки, манжеты и другие изделия.

Морозостойкие резины изготавливаются на основе каучуков, имеющих низкие температуры стеклования, например, например, бутадиенстирольного. Устойчивость резин к повышенным температурам зависит от состава вулканизатора. Наибольшей термостойкостью обладают резины со смоляной вулканизирующей системой. Морозо- и теплостойкие резины наиболее часто используются в качестве уплотнителей.

Светоозоностойкие резины вырабатывают на основе насыщенных каучуков — фторсодержащих, бутилкаучука и др. Помимо устойчивости к атмосферным влияниям эти материалы хорошо сопротивляются истиранию, воздействию масел и топлива, имеют высокую теплостойкость. Широко распространены в изделиях авто- и авиапромышленности.

3. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Студенты выполняют работу по индивидуальным заданиям, приведенным в Приложении 1. Содержание работы заключается в следующем:

- 1. Ознакомиться с методическим указанием, изучить строение, классификацию и свойства полимеров.
- 2. Используя методическое указание и справочную литературу, определить свойства полимерных материалов, согласно индивидуальному заданию (прил. 1).
 - 3. Занести данные в таблицу (прил. 2).
 - 4. Оформить отчёт.
 - 5. Ответить на контрольные вопросы.

4. ОФОРМЛЕНИЕ ОТЧЁТА

Отчёт должен содержать:

- наименование и цель лабораторной работы;
- краткие теоретические положения;
- таблицу (см. прил. 2), заполненную в соответствии с индивидуальным заданием.

5. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Дайте определение полимеров.
- 2. Как классифицируются полимеры в соответствии с молекулярной и надмолекулярной структурой?
- 3. Чем отличаются регулярные полимеры от нерегулярных?
- 4. Дайте определение пластмасс и приведите их классификацию по назначению.
- 5. Какие материалы называются реактопластами? Приведите примеры.
- 6. Какие материалы называются термопластами? Приведите примеры.
- 7. Назовите особенности вспененных полимеров. Какие материалы принадлежат к этой группе?
- 8. Дайте определение эластомеров. На какие группы делятся эти материалы?
- 9. Какие виды резин Вы знаете? Опишите технологию получения резин. Приведите примеры.
- 10. Как классифицируют резины по назначению? Приведите примеры резин специального назначения, опишите их свойства.

6. СПИСОК ЛИТЕРАТУРЫ

- 1. Материаловедение: учебник для вузов / Ю. М. Лахтин, В. П. Леонтьева. 4-е изд. Москва: Альянс, 2009. 528 с.
- 2. Фетисов, Γ . П. Материаловедение и технология металлов : учебник для ВУЗов / Γ . П. Фетисов [и др.]. 3-е изд. перераб. и доп. Москва : Высш. шк., 2005. 862 с.
- 3. Материаловедение и технология конструкционных материалов: учебник для ВУЗов / под ред. В. Б. Арзамасова и А. А. Черепахина. Москва: Академия, 2007. 448 с.
- 4. Справочник по конструкционным материалам / под ред. Б. Н. Арзамасова, Т. В. Соловьевой. Москва : Изд-во МГТУ им. Н. Э. Баумана, 2005. 640 с.

Приложение 1

Варианты заданий

No	Наименование полимера
1	Полиэтилен высокого давления (ПЭВД)
2	Полистирол
3	Маслобензостойкая резина
4	Волокнит
5	Асбоволокнит
6	Стекловолокнит
7	Гетинакс
8	Текстолит
9	Полиметилакрилат (оргстекло)
10	ДСП
11	Стеклотекстолит
12	CBAM
13	Полиэтилен низкого давления (ПЭНД)
14	Пенополистирол
15	Пенополивинилхлорид
16	Пенополиуретан
17	Поролон
18	Теплостойкая резина
19	Пенополиэпоксид
20	Полипропилен
21	Полистирол
22	Фторопласт-4
23	Фторопласт-3
24	Поливинилхлорид
25	Полиформальдегид

Приложение 2

Оформление отчета

Наиме-	Группа по назна- чению	Свойст	за	Метод получения	Применение
		физико- механические	специ- альные		

Составители

Константин Петрович Петренко Елена Михайловна Додонова

ПОЛИМЕРНЫЕ МАТЕРИАЛЫ. КЛАССИФИКАЦИЯ, СТРОЕНИЕ СВОЙСТВА И ПРИМЕНЕНИЕ

Методические указания к лабораторной работе по дисциплинам «Материаловедение», «Основы материаловедения» для студентов технических направлений всех форм обучения

Печатается в авторской редакции

Подписано в печать 10.04.2017. Формат 60×84/16. Бумага офсетная. Отпечатано на ризографе. Уч.-изд. л. 1,2. Тираж 24 экз. Заказ _____. КузГТУ. 650000, Кемерово, ул. Весенняя, 28. Издательский центр КузГТУ. 650000, Кемерово, ул. Д. Бедного, 4А